The adsorption ability of powders obtained by pulsed electrical discharge in cryogenic liquids

Alagha AN, Hussain S, Zaki W (2021) Additive manufacturing of shape memory alloys: a review with emphasis on powder bed systems. Mater Des 204:109654. https://doi.org/10.1016/j.matdes.2021.109654

Article  CAS  Google Scholar 

Bauer D (2017) Investigations on aging behaviour of aluminum powders during a lifetime simulation for the LBM process. Powder Metall 60:175–183. https://doi.org/10.1080/00325899.2017.1288841

Article  CAS  Google Scholar 

Ben Davida R, Ohaion-Raz T, Rafailov G, Danon A, Finkelstein Y (2020) Thermal desorption kinetics of H2O and H2 from rapidly solidified Al-Zn-Mg alloy powders. Thermochim Acta 686:178554. https://doi.org/10.1016/j.tca.2020.178554

Article  CAS  Google Scholar 

Berkowitz AE, Harper H, Smith DJ et al (2004) Hollow metallic microspheres produced by spark erosion. Appl Phys Lett 85:940. https://doi.org/10.1063/1.1779962

Article  CAS  Google Scholar 

Berkowitz AE, Walter JL (1982) Amorphous particles produced by spark erosion. Mat Sci Eng 55:275–287. https://doi.org/10.1016/S0304-8853(02)00932-0

Article  CAS  Google Scholar 

Berkowitz AE, Walter JL (1987) Spark erosion: a method for producing rapidly quenched fine powders. J Mater Res 2:277–288. https://doi.org/10.1557/JMR.1987.0277

Article  CAS  Google Scholar 

Campbell CT, Sellers JRV (2013) Enthalpies and entropies of adsorption on well-defined Oxide surfaces: experimental measurements. Chem Rev 113:4106–4135. https://doi.org/10.1021/cr300329s

Article  CAS  Google Scholar 

Caputo MP, Berkowitz AE, Armstrong A et al (2018) 4D printing of net shape parts made from Ni-Mn-Ga magnetic shape-memory alloys. Addit Manuf 21:579–588. https://doi.org/10.1016/j.addma.2018.03.028

Article  CAS  Google Scholar 

Carreira P, Gatoes D, Alves N et al (2022) Searching new solutions for NiTi sensors through indirect additive manufacturing. Materials 15:5007

Article  CAS  Google Scholar 

Carrey J, Radousky HB, Berkowitz AE (2004) Spark-eroded particles: influence of processing parameters. J Appl Phys 95:823–829. https://doi.org/10.1063/1.1635973

Article  CAS  Google Scholar 

Chmielewska M, Wysocki B, Kwasniak P et al (2022) Heat treatment of NiTi alloys fabricated using laser powder bed fusion (LPBF) from elementary powders. Materials 15:3304. https://doi.org/10.3390/ma15093304

Article  CAS  Google Scholar 

Cordova L, Campos M, Tinga T (2017) Assessment of Moisture Content and Its Influence on Laser Beam Melting Feedstock Proc. Euro PM20217 Congress & Exhibition, Italy

Diebold U (2003) The surface science of titanium dioxide (2003). Surf Sci Rep 48(5–8):53–229. https://doi.org/10.1016/S0167-5729(02)00100-0

Article  CAS  Google Scholar 

Elahinia M, Moghaddam NS, Andani MT et al (2016) Fabrication of NiTi through additive manufacturing: a review. Prog Mater Sci 83:630–663. https://doi.org/10.1016/j.pmatsci.2016.08.001

Article  CAS  Google Scholar 

Fu Y, Shearwood C (2004) Characterization of nanocrystalline TiNi powder. Scr Mater 50:319–323. https://doi.org/10.1016/j.scriptamat.2003.10.018

Article  CAS  Google Scholar 

Grubbs J, Sousa BC, Cote D (2022) Exploration of the effects of metallic powder handling and storage conditions on flowability and moisture content for additive manufacturing applications. Metals 12:603. https://doi.org/10.3390/met12040603

Article  CAS  Google Scholar 

Gustmann T, Schwab H, Kühn U, Pauly S (2018) Selective laser remelting of an additively manufactured Cu-Al-Ni-Mn shape-memory alloy. Mater Des 153:129–138. https://doi.org/10.1016/j.matdes.2018.05.010

Article  CAS  Google Scholar 

Ibarra A, Rodriguez PP, Recarte V, Pérez-Landazábal JI et al (2004) Internal friction behaviour during martensitic transformation in shape memory alloys processed by powder metallurgy. Mater Sci A 370:492–496. https://doi.org/10.1016/j.msea.2003.06.005

Article  CAS  Google Scholar 

Ingale B, Gopalan R, Rajasekhar M, Ram S (2009) Studies on ordering temperature and martensite stabilization in Ni55Mn20-xGa25+x alloys. J Alloys Compounds 475:276–280. https://doi.org/10.1016/j.jallcom.2008.08.004

Article  CAS  Google Scholar 

Ivanova OM, Danylenko MI, Monastyrsky GE et al (2009) Doslidzhennya mehanizmiv utvorennya nanoporoshkiv Ti-Ni-Zr-Cu, otrimanih metodom elektroiskrovoyi eroziyi v kriogennih ridinah (in ukrainan). Metallofiz Noveishie Tekhnol 31:603–614

CAS  Google Scholar 

Khoo ZX, Liu Y, An J et al (2018) A review of selective laser melted NiTi shape memory alloy. Materials 11:519

Article  Google Scholar 

Laitinen V, Sozinov A, Saremn A et al (2019) Laser powder bed fusion of Ni-Mn-Ga magnetic shape memory alloy. Addit Manuf 30:100891

CAS  Google Scholar 

Lee YT, Peters M (1990) Effect of degassing treatment on microstructure and mechanical properties of PM Ti-6Al-4V. Powder Metall Intern 22(1):111–116

Google Scholar 

Liu Y, Zhang J, Yu L, Jia G, Jing C, Cao S (2005) Magnetic and frequency properties for nanocrystalline Fe-Ni alloys prepared by high-energy milling method. J Magn Magn Mater 285(1–2):138–144. https://doi.org/10.1016/j.jmmm.2004.07.030

Article  CAS  Google Scholar 

Marchettia L, Mellinb P, Hulmea CN (2022) Negative impact of humidity on the flowability of steel powders. Part Sci Technol 40(6):722–736. https://doi.org/10.1080/02726351.2021.1995091

Article  CAS  Google Scholar 

Maziarz W, Dutkiewicz J, Van Humbeeck J, Czeppe T (2004) Mechanically alloyed and hot pressed Ni-49.7Ti alloy showing martensitic transformation. Mater Sci A 375–377:844–848. https://doi.org/10.1016/j.msea.2003.10.127

Article  CAS  Google Scholar 

Mellin P, Rashidi M, Fischer M et al (2021) Moisture in metal powder and its implication for processability in L-PBF and elsewhere. Berg Huettenmaenn Monatsh 166(1):33–39

Article  CAS  Google Scholar 

Mellin P, Zavalis T, Ting L (2020) Moisture content analysis of metal. Met Powder Rep 75(1):34–39. https://doi.org/10.1016/j.mprp.2019.04.002

Article  Google Scholar 

Minnekhanov GN, Skutin ED, Eryomin EN et al (2010) Issledovanie degazacii ul’tradispersnyh poroshkov tugoplavkih soedinenij pri tverdofaznoj aktivacii modificiruyushchih kompleksov. Omskij Nauchnyj Vestnik 3:35–38

Google Scholar 

Mitterlehner M, Danninger H, Gierl-Mayer C et al (2021) Processability of moist superalloy powder by SLM. Berg Huettenmaenn Monatsh 166(1):23–32. https://doi.org/10.1007/s00501-020-01065-z

Article  CAS  Google Scholar 

Monastyrsky GE (2015) Nanoparticles formation mechanisms through the spark erosion of alloys in cryogenic liquids. Nanoscale Res Lett 10:503–511. https://doi.org/10.1186/s11671-015-1212-9

Article  CAS  Google Scholar 

Monastyrsky GE, Kolomytsev VI, Koval YM et al (2011a) Strukturnye issledovaniya poroshkov iz splavov s effektom pamyati formy na osnove Ti-Ni-Hf, poluchennyh metodom elektroiskrovoy erozii v zhidkom argone. Metallofiz Noveishie Tekhnol 33:289–300

Google Scholar 

Monastyrsky GE, Ochin P, Gilchuk AV et al (2012) The role of nano-sized fraction on spark plasma sintering the pre-alloyed spark-erosion powders. J Nano Elect Phys 4(1):1007-1–1007-7

Google Scholar 

Monastyrsky GE, Ochin P, Wang GY, Gilchuk AV, Kolomytsev VI, Koval YuN et al (2011b) Effect of particle size on the chemical composition of Ti-Ni-base spark erosion powder obtained in liquid argon. Chem Met Alloys. https://doi.org/10.30970/cma4.0179

Article  Google Scholar 

Monastyrsky GE, Ochin P, Wang GY, Kolomytsev VI, Koval YN et al (2011c) Structure and composition of titanium spark erosion powder obtained in liquid nitrogen. Chem Met Alloys 4(1/2):126–142. https://doi.org/10.30970/cma4.0178

Article  Google Scholar 

Monastyrsky GE, Yakovenko PA, Kolomytsev VI, Koval YuN, Shcherba AA, Portier R (2008) Characterization of spark-eroded shape memory alloy powders obtained in cryogenic liquids. Mat Sci Eng A 481–482:643–646. https://doi.org/10.1016/j.msea.2006.12.213

Article  CAS  Google Scholar 

Ochin P, Gilchuk AV et al (2013) Martensitic transformation in spark plasma sintered compacts of Ni-Mn-Ga powders prepared by spark erosion method in cryogenic liquids. Mat Sci Forum 738:451–455. https://doi.org/10.4028/www.scientific.net/MSF.738-739.451

Article  CAS  Google Scholar 

Pérez-Cerrato M, Fraile I, Gómez-Cortés JF et al (2022) Designing for shape memory in additive manufacturing of Cu-Al-Ni shape memory alloy processed by laser powder bed fusion. Materials 15:6284. https://doi.org/10.3390/ma15186284

Article  CAS  Google Scholar 

Porter GA, Liaw PK, Tiegs TN, Wu KH (2000) Particle size reduction of NiTi shape-memory alloy powders. Scr Mater 43:1111–1117. https://doi.org/10.1016/S1359-6462(00)00539-X

Article  CAS  Google Scholar 

Portier RA, Ochin P, Pasko AYu, Monastyrsky GE et al (2013) Spark plasma sintering of Cu-Al-Ni shape memory alloy. J Alloys Compounds 577S1:S472–S477. https://doi.org/10.1016/j.jallcom.2012.02.145

Article  CAS  Google Scholar 

Pricop B, Söyler AU, Özkal B, Bujoreanu LG (2020) Powder metallurgy: an alternative for FeMnSiCrNi shape memory alloys processing. Front Mater 7:247. https://doi.org/10.3389/fmats.2020.00247

Article  Google Scholar 

Sánchez-Alarcos V, Pérez-Landazábal JI, Gómez-Polo C, Recarte V (2008) Influence of the atomic order on the magnetic characteristics of a Ni-Mn-Ga ferromagnetic shape memory alloy. J MMM 320:160–163. https://doi.org/10.1016/j.jmmm.2008.02.039

Article  CAS  Google Scholar 

Sánchez-Alarcos V, Recarte V et al (2007) Correlation between atomic order and the characteristics of the structural and magnetic transformations in Ni-Mn-Ga shape memory alloys. Acta Mat 55:3883. https://doi.org/10.1016/j.actamat.2007.03.001

Article  CAS  Google Scholar 

Shcherba AA, Podoltsev AD, Kucheryavaya IN (2004) Spark erosion of conducting granules in a liquid: analysis of electromagnetic, thermal and hydrodynamic processes. Tekhn Elektrodin 6:4–18

Google Scholar 

Smith RS, Li Z, Chen L et al (2014) Adsorption, Desorption, and displacement kinetics of H2O and CO2 on TiO2(110). J Phys Chem B 118:8054–8061. https://doi.org/10.1021/jp501131v

Article  CAS  Google Scholar 

Tepper F (2000) Nanosize powders produced by electro-explosion of wire and their potential applications. Powder Metall 43(4):320–322

CAS  Google Scholar 

Tian J, Zhu W, Wei Q et al (2019) Process optimization, microstructures and mechanical properties of a Cu-Based shape memory alloy fabricated by selective laser melting. J Alloys Comp 785:754–764

留言 (0)

沒有登入
gif