Assessment of carbon nanotube’s bulk density property for improving flexural aspects of reinforcement steel-less concrete in construction projects-II

Aarthi K, Arunachalam K (2018) Durability studies on fibre reinforced self compacting concrete with sustainable wastes. J Clean Prod 174:247–255

Article  CAS  Google Scholar 

Al-Rub RKA, Ashour AI, Tyson BM (2012) On the aspect ratio effect of multi-walled carbon nanotube reinforcements on the mechanical properties of cementitious nanocomposites. Constr Build Mater 35:647–655

Article  Google Scholar 

Behdinan K, Moradi-Dastjerdi R, Safaei B, Qin Z, Chu F, Hui D (2020) Graphene and CNT impact on heat transfer response of nanocomposite cylinders. Nanotechnol Rev 9:41–52

Article  CAS  Google Scholar 

Bharj J, Singh S, Chander S, Singh R (2014) Experimental study on compressive strength of cement-CNT composite paste. Indian J Pure Appl Phys 52:35–38

CAS  Google Scholar 

Cha SW, Song C, Cho YH, Choi S (2014) Piezoresistive properties of CNT reinforced cementitious composites. Maney Publish. S2716–S2721

Chaipanich A, Nochaiya T, Wongkeo W, Torkittikul P (2010) Compressive strength and microstructure of carbon nanotubes–fly ash cement composites. Mater Sci Eng A 527:1063–1067

Article  Google Scholar 

Cho YK, Jung SH, Choi YC (2019) Effects of chemical composition of fly ash on compressive strength of fly ash cement mortar. Constr Build Mater 204:255–264. https://doi.org/10.1016/j.conbuildmat.2019.01.208

Article  CAS  Google Scholar 

Cook RA, Hover KC (1999) Mercury porosimetry of hardened cement pastes. Cem Concr Res 29(6):933–943

Article  CAS  Google Scholar 

Cooper C, Young R, Halsall M (2001) Investigation into the deformation of carbon nanotubes and their composites through the use of Raman spectroscopy. Compos Part A Appl Sci Manuf 32:401–411

Article  Google Scholar 

Cui H, Yang S, Memon SA (2015) Development of carbon nanotube modified cement paste with microencapsulated phase-change material for structural–functional integrated application. Int J Mol Sci 16:8027–8039

Article  CAS  Google Scholar 

Diamond S (2000) Mercury porosimetry: an inappropriate method for the measurement of pore size distributions in cement-based materials. Cem Concr Res 30(10):1517–1525

Article  CAS  Google Scholar 

Han B, Yang Z, Shi X, Yu Xu (2013) Transport properties of carbon-nanotube/cement composites. J Mater Eng Perform 22(1):184–189

Article  CAS  Google Scholar 

He JH, Elazem NY (2022) The carbon nanotube-embedded boundary layer theory for energy harvesting. FactaUniversitatis-Ser Mech Eng 20(2):211–235

Article  Google Scholar 

Ijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58

Article  Google Scholar 

Konsta-Gdoutos MS, Metaxa ZS, Shah SP (2010) Multi-scale mechanical and fracture characteristics and early-age strain capacity of high performance carbon nanotube/cement nanocomposites. Cem Concr Compos 32:110–115

Article  CAS  Google Scholar 

Laura MEC, Natalia Á, Elisabeth RP, Rogelio O, Jorge HQO (2020) Time-stability dispersion of MWCNTs for the improvement of mechanical properties of Portland cement specimens. Materials 13:4149. https://doi.org/10.3390/ma13184149

Article  CAS  Google Scholar 

Laura MEC, Rafael C, Jorge QO, Harvi ACC, Laura VR, Elisabeth RP (2022) Effects of molarity and storage time of MWCNTs on the properties of cement paste. Materials 15:9035. https://doi.org/10.3390/ma15249035

Article  CAS  Google Scholar 

Li GY, Wang PM, Zhao X (2007) Pressure-sensitive properties and microstructure of carbon nanotube reinforced cement composites. Cem Concr Compos 29:377–382

Article  CAS  Google Scholar 

Liebscher M, Dinh TT, Schrofl C, Mechtcherine V (2020) Dispersion of different carbon-based nanofillers in aqueous suspension by polycarboxylate comb-type copolymers and their influence on the early age properties of cementitious matrices. Constr Build Mater 241:118039

Article  CAS  Google Scholar 

Luo JL, Duan ZD, Zhao TJ (2010) Properties of electrical resistivity of fiber-reinforced cement composites with multi-walled carbon nanotubes. J Harbin Instit Technol 42(8):1237–1241

Google Scholar 

Mahmud MA, Elumalai NK, Upama MB, Wang D, Wright M, Cheng X, Uddin A (2018) Adsorbed carbon nanomaterials for surface and interface-engineered stable rubidium multi-cation perovskite solar cells. Nanoscale 10:773–790

Article  CAS  Google Scholar 

Manzur T, Yazdani N, Emon MAB (2014) Effect of carbon nanotube size on compressive strengths of nanotube reinforced cementitious composites. J Mater 2014:1–8

Google Scholar 

Marco L, Lazaros T, Dominik J, Tin T, Viktor M (2020) Electrical Joule heating of cementitious nanocomposites filled with multi-walled carbon nanotubes: role of filler concentration, water content, and cement age. Smart Mater Struct 29:125019

Article  Google Scholar 

Masood A, Soltanzadeh F, Baqi A, Shariq M (2014) Compressive strength of normal and high strength concrete with polypropylene fibers at elevated temperature. Int J Civ Struct Eng 1(2)

Nayak S, Bhattacharjee S, Singh BP (2014) A systematic study on the effect of acidic, basic and neutral additives on dispersion of multiwalled carbon nanotubes using a dimethylformamide solution. Adv Nat Sci Nanosci Nanotechnol 5:1–8

Article  Google Scholar 

Nochaiya T, Chaipanich A (2011) Behavior of multi-walled carbon nanotubes on the porosity and microstructure of cement-based materials. Appl Surf Sci 257:1941–1945

Article  CAS  Google Scholar 

Panagiota T, Dalla Ilias K, Tragazikis GT, Costas G, Konstantinos GD, Theodore EM (2021) Multifunctional cement mortars enhanced with graphene nanoplatelets and carbon nanotubes. Sensors 21:933–950

Article  Google Scholar 

Petrunin S, Vaganov V, Reshetniak V, Zakrevskaya L (2015) Influence of Carbon Nanotubes on the Structure Formation of Cement Matrix, 2nd Int Conf Inn Mater Struc Tech IOP Publish 1–6

Qin Z, Pang X, Safaei B, Chu F (2019) Free vibration analysis of rotating functionally graded CNT reinforced composite cylindrical shells with arbitrary boundary conditions. Compos Struct 220:847–860

Article  Google Scholar 

Rysaeva L, Bachurin D, Murzaev R, Abdullina D, Korznikova E, Mulyukov R, Dmitriev S (2020) Evolution of the carbon nanotube bundle structure under biaxial and shear strains. FactaUniversitatis-Series Mechanical Engineering 18(4):525–536

Article  Google Scholar 

Saafi M (2009) Wireless and embedded carbon nanotube networks for damage detection in concrete structures. Nanotechnology 20(39):395–502

Article  Google Scholar 

Saha S, Rajasekaran C (2017) Enhancement of the properties of fly ash based geopolymerpaste by incorporating ground granulated blast furnace slag. Constr Build Mater 146:615–620

Article  CAS  Google Scholar 

Shahzad S, Toumi A, Balayssac JP, Turatsinze A, Mazars V (2022) Cementitious composites incorporating Multi-Walled Carbon Nanotubes (MWCNTs): Effects of annealing and other dispersion methods on the electrical and mechanical properties. Matériaux Tech 110:104

Article  CAS  Google Scholar 

Shao H, Chen B, Li B, Tang S, Li Z (2017) Influence of dispersants on the properties of CNTs reinforced cement-based materials. Constr Build Mater 131:186–194

Article  CAS  Google Scholar 

Srinivasan K, Ambalavanan R, Sundararajulu V (2017) Studies on admixing multi-walled carbon nanotubes with cement composites—a review. Int J Civ Eng Technol 8(4):777–785

Google Scholar 

Srinivasan K, Sudarsan JS, Nithiyanantham S (2021) Feasibility assessment of bulk density property of carbon nano tube as a viable alternative to reinforced steel in construction projects. Case stud constr 15:e00716

Google Scholar 

Stefanidou M, Papayianni I (2012) Influence of nano-SiO2 on the Portland cement pastes. Composites Part B Eng 43:2706–2710

Article  CAS  Google Scholar 

Sun RJ, Wei SS, Zhao ZQ, Huang DW, Ge Z (2013) Electrical resistivity and piezoresistivity of the carbon-nanotube cement-based composite. Appl Mech Mater 357:990–993

Article  Google Scholar 

Susana A, Edward MAGG, Luis V, Jazmin C, Ricardo P, Katherine C, Shirley T, Roberto D, Carmela B, Elvis G (2020) Effect of additions of multiwall carbon nanotubes (MWCNT, MWCNT-COOH and MWCNT-Thiazol) in mechanical compression properties of a cement-based material. Materialia 11:100739. https://doi.org/10.1016/j.mtla.2020.100739

Article  CAS  Google Scholar 

Tahermansouri H, Islami F, Gardaneh M, Kiani F (2016) Functionalisation of multiwalled carbon nanotubes with thiazole derivative and their influence on SKBR3 and HEK293 cell lines. Mater Technol 31:371–376. https://doi.org/10.1179/1753555715Y.0000000062

Article  CAS  Google Scholar 

Tuinstra F, Koenig JL (1970) Raman spectrum of graphite. J Chem Phys 53(3):1126–1130

Article  CAS  Google Scholar 

Tyson BM, Al-Rub RKA, Yazdanbakhsh A, Grasley Z (2011) Carbon nanotubes and carbon nanofibers for enhancing the mechanical properties of nanocomposite cementitious materials. J Mater Civ Eng 23(7):1028–1035

Article  CAS  Google Scholar 

Winslow D, Liu D (1990) The pore structure of paste in concrete. Cem Concr Res 20:227–235

Article  CAS  Google Scholar 

Yaragal SC, Gowda SNB, Rajasekaran C (2019) Characterization and performance of processed lateritic fine aggregates in cement mortars and concretes. Constr Build Mater 200:10–25

Article  Google Scholar 

Zein H (2018) Studying the influence of various geometrical parameters of single-walled carbon nano-tubes of armchair chirality type on its mechanical behavior. World J Appl Chem 3:17

Article  Google Scholar 

Zhang L, Ding S, Dong S, Li Z, Ouyang J, Yu X, Han B (2017) Piezoresistivity, mechanisms and model of cement-based materials with CNT/NCB composite fillers. Mater Res Express 4(12):16

Article  CAS  Google Scholar 

留言 (0)

沒有登入
gif