Combined “Gateway” and “Spillover” effects originated from a CeNi5 alloy catalyst for hydrogen storage of MgH2

T. He, P. Pachfule, H. Wu, Q. Xu, and P. Chen, Hydrogen carriers, Nat. Rev. Mater., 1(2016), No. 12, art. No. 16059.

Google Scholar 

Q.W. Lai, M. Paskevicius, D.A. Sheppard, et al., Hydrogen storage materials for mobile and stationary applications: Current state of the art, ChemSusChem, 8(2015), No. 17, p. 2789.

Article  CAS  Google Scholar 

S.Y. Lee, J.H. Lee, Y.H. Kim, J.W. Kim, K.J. Lee, and S.J. Park, Recent progress using solid-state materials for hydrogen storage: A short review, Processes, 10(2022), No. 2, art. No. 304.

Google Scholar 

H.J. Lin, Y.S. Lu, L.T. Zhang, H.Z. Liu, K. Edalati, and Á. Révész, Recent advances in metastable alloys for hydrogen storage: A review, Rare Met., 41(2022), No. 6, p. 1797.

Article  CAS  Google Scholar 

J.A. Bolarin, Z. Zhang, H. Cao, Z. Li, T. He, and P. Chen, Room temperature hydrogen absorption of Mg/MgH2 catalyzed by BaTiO3, J. Phys. Chem. C, 125(2021), No. 36, p. 19631.

Article  Google Scholar 

I.P. Jain, Hydrogen the fuel for 21st century, Int. J. Hydrog. Energy, 34(2009), No. 17, p. 7368.

Article  CAS  Google Scholar 

Q. Li, Y.F. Lu, Q. Luo, et al., Thermodynamics and kinetics of hydriding and dehydriding reactions in Mg-based hydrogen storage materials, J. Magnes. Alloys, 9(2021), No. 6, p. 1922.

Article  CAS  Google Scholar 

Y. Li, Y. Tao, and Q. Huo, Effect of stoichiometry and Cu-substitution on the phase structure and hydrogen storage properties of Ml—Mg—Ni-based alloys, Int. J. Miner. Metall. Mater., 22(2015), No. 1, p. 86.

Article  Google Scholar 

J. Cermak, L. Kral, and P. Roupcova, Significantly decreased stability of MgH2 in the Mg—In—C alloy system: Long-period-stacking-ordering as a new way how to improve performance of hydrogen storage alloys? Renewable Energy, 150(2020), p. 204.

Article  CAS  Google Scholar 

H.G. Gao, S. Rui, J.L. Zhu, et al., Interface effect in sandwich like Ni/Ti3C2 catalysts on hydrogen storage performance of MgH2, Appl. Surf. Sci., 564(2021), art. No. 150302.

L. Ji, L.T. Zhang, X.L. Yang, X.Q. Zhu, and L.X. Chen, The remarkably improved hydrogen storage performance of MgH2 by the synergetic effect of an FeNi/rGO nanocomposite, Dalton Trans., 49(2020), No. 13, p. 4146.

Article  CAS  Google Scholar 

Y.S. Lu, H. Wang, J.W. Liu, L.Z. Ouyang, and M. Zhu, Destabilizing the dehydriding thermodynamics of MgH2 by reversible intermetallics formation in Mg—Ag—Zn ternary alloys, J. Power Sources, 396(2018), p. 796.

Article  CAS  Google Scholar 

C. Peng, Y.T. Li, and Q.G. Zhang, Enhanced hydrogen desorption properties of MgH2 by highly dispersed Ni: The role of in situ hydrogenolysis of nickelocene in ball milling process, J. Alloys Compd., 900(2022), art. No. 163547.

C. Zhou, Y.Y. Peng, and Q.G. Zhang, Growth kinetics of MgH2 nanocrystallites prepared by ball milling, J. Mater. Sci. Technol., 50(2020), p. 178.

Article  CAS  Google Scholar 

Q.Y. Zhang, Y.K. Huang, L. Xu, et al., Highly dispersed MgH2 nanoparticle-graphene nanosheet composites for hydrogen storage, ACS Appl. Nano Mater., 2(2019), No. 6, p. 3828.

Article  CAS  Google Scholar 

J.N. Chen, J. Zhang, J.H. He, et al., A comparative study on hydrogen storage properties of as-cast and extruded Mg—4.7Y—4.1Nd—0.5Zr alloys, J. Phys. Chem. Solids, 161(2022), art. No. 110483.

Y. Fu, Z. Ding, L. Zhang, et al., Catalytic effect of a novel MgC0.5Co3 compound on the dehydrogenation of MgH2, Prog. Nat. Sci. Mater. Int., 31(2021), No. 2, p. 264.

Article  CAS  Google Scholar 

X. Lu, L.T. Zhang, J.G. Zheng, and X.B. Yu, Construction of carbon covered Mg2NiH4 nanocrystalline for hydrogen storage, J. Alloys Compd., 905(2022), art. No. 164169.

T.H. Huang, X. Huang, C.Z. Hu, et al., MOF-derived Ni nanoparticles dispersed on monolayer MXene as catalyst for improved hydrogen storage kinetics of MgH2, Chem. Eng. J., 421(2021), art. No. 127851.

S. Ren, Y. Fu, L. Zhang, et al., An improved hydrogen storage performance of MgH2 enabled by core—shell structure Ni/Fe3O4@MIL, J. Alloys Compd., 892(2022), art. No. 162048.

Y. Chen, H.Y. Zhang, F.Y. Wu, et al., Mn nanoparticles enhanced dehydrogenation and hydrogenation kinetics of MgH2 for hydrogen storage, Trans. Nonferrous Met. Soc. China, 31(2021), No. 11, p. 3469.

Article  CAS  Google Scholar 

Z. Liang, Z. Yao, X. Xiao, et al., Positive impacts of tuning lattice on cyclic performance in ZrCo-based hydrogen isotope storage alloys, Mater. Today Energy, 20(2021), art. No. 100645.

W. Chen, S.L. Ju, Y.H. Sun, et al., Thermodynamically favored stable hydrogen storage reversibility of NaBH4 inside of bimetallic nanoporous carbon nanosheets, J. Mater. Chem. A, 10(2022), No. 13, p. 7122.

Article  CAS  Google Scholar 

T. Huang, X. Huang, C. Hu, et al., Enhancing hydrogen storage properties of MgH2 through addition of Ni/CoMoO4 nanorods, Mater. Today Energy, 19(2021), art. No. 100613.

G. Liang, J. Huot, S. Boily, A. van Neste, and R.Schulz, Catalytic effect of transition metals on hydrogen sorption in nanocrystalline ball milled MgH2—Tm (Tm = Ti, V, Mn, Fe and Ni) systems, J. Alloys Compd., 292(1999), No. 1–2, p. 247.

Article  CAS  Google Scholar 

L. Xie, Y. Liu, X.Z. Zhang, J.L. Qu, Y.T. Wang, and X.G. Li, Catalytic effect of Ni nanoparticles on the desorption kinetics of MgH2 nanoparticles, J. Alloys Compd., 482(2009), No. 1–2, p. 388.

Article  CAS  Google Scholar 

B. Zhang, Y.J. Lv, J.G. Yuan, and Y. Wu, Effects of microstructure on the hydrogen storage properties of the melt-spun Mg—5Ni—3La (at.%) alloys, J. Alloys Compd., 702(2017), p. 126.

Article  CAS  Google Scholar 

H.W. Zhang, X.Y. Zheng, X. Tian, Y. Liu, and X.G. Li, New approaches for rare earth—magnesium based hydrogen storage alloys, Prog. Nat. Sci. Mater. Int., 27(2017), No. 1, p. 50.

Article  Google Scholar 

Z.M. Yuan, T. Yang, W.G. Bu, H.W. Shang, Y. Qi, and Y.H. Zhang, Structure, hydrogen storage kinetics and thermodynamics of Mg-base Sm5Mg41 alloy, Int. J. Hydrogen Energy, 41(2016), No. 14, p. 5994.

Article  CAS  Google Scholar 

Y.H. Zhang, L.W. Li, D.C. Feng, P.F. Gong, H.W. Shang, and S.H. Guo, Hydrogen storage behavior of nanocrystalline and amorphous La—Mg—Ni-based LaMg 12-type alloys synthesized by mechanical milling, Trans. Nonferrous Met. Soc. China, 27(2017), No. 3, p. 551.

Article  CAS  Google Scholar 

X. Zhao, S.M. Han, Y. Li, X.C. Chen, and D.D. Ke, Effect of CeH2.29 on the microstructures and hydrogen properties of LiBH4—Mg2NiH4 composites, Int. J. Miner. Metall. Mater., 22(2015), No. 4, p. 423.

Article  CAS  Google Scholar 

H.J. Lin, J.J. Tang, Q. Yu, et al., Symbiotic CeH2.73/CeO2 catalyst: A novel hydrogen pump, Nano Energy, 9(2014), p. 80.

Article  CAS  Google Scholar 

L.T. Zhang, Z.L. Cai, Z.D. Yao, et al., A striking catalytic effect of facile synthesized ZrMn2 nanoparticles on the de/rehydrogenation properties of MgH2, J. Mater. Chem. A, 7(2019), No. 10, p. 5626.

Article  Google Scholar 

Y. Ye, Y. Yue, J.F. Lu, J. Ding, W. Wang, and J. Yan, Enhanced hydrogen storage of a LaNi5 based reactor by using phase change materials, Renewable Energy, 180(2021), p. 734.

Article  CAS  Google Scholar 

E. Grigorova, P. Tzvetkov, S. Todorova, P. Markov, and T. Spassov, Facilitated synthesis of Mg2Ni based composites with attractive hydrogen sorption properties, Materials, 14(2021), No. 8, art. No. 1936.

Google Scholar 

J. Zhang, L. He, Y. Yao, et al., Catalytic effect and mechanism of NiCu solid solutions on hydrogen storage properties of MgH2, Renewable Energy, 154(2020), p. 1229.

Article  CAS  Google Scholar 

S.N. Klyamkin and N.S. Zakharkina, Hysteresis and related irreversible phenomena in CeNi5-based intermetallic hydrides, J. Alloys Compd., 361(2003), No. 1–2, p. 200.

Article  CAS  Google Scholar 

X. Lu, L.T. Zhang, H.J. Yu, et al., Achieving superior hydrogen storage properties of MgH2 by the effect of TiFe and carbon nanotubes, Chem. Eng. J., 422(2021), No. 17, art. No. 130101.

Google Scholar 

N.H. Vasoya, L.H. Vanpariya, P.N. Sakariya, et al., Synthesis of nanostructured material by mechanical milling and study on structural property modifications in Ni0.5Zn0.5Fe2O4, Ceram. Int., 36(2010), No. 3, p. 947.

Article  CAS  Google Scholar 

J. Zhang, S. Yan, G.L. Xia, et al., Stabilization of low-valence transition metal towards advanced catalytic effects on the hydrogen storage performance of magnesium hydride, J. Magnes. Alloys, 9(2021), No. 2, p. 647.

Article  CAS  Google Scholar 

Y.T. Shao, H.G. Gao, Q.K. Tang, et al., Ultra-fine TiO2 nanoparticles supported on three-dimensionally ordered macroporous structure for improving the hydrogen storage performance of MgH2, Appl. Surf. Sci., 585(2022), art. No. 152561.

Q. Li, X. Lin, Q. Luo, et al., Kinetics of the hydrogen absorption and desorption processes of hydrogen storage alloys: A review, Int. J. Miner. Metall. Mater., 29(2022), No. 1, p. 32.

Article  CAS  Google Scholar 

J.C. Fuggle, F.U. Hillebrecht, Z. Zolnierek, et al., Electronic structure of Ce and its intermetallic compounds, Phys. Rev. B, 27(1983), No. 12, p. 7330.

Article  CAS  Google Scholar 

T.L. Barr, C.G. Fries, F. Cariati, J.C.J. Bart, and N. Giordano, A spectroscopic investigation of cerium molybdenum oxides, J. Chem. Soc., Dalton Trans., 1983, No. 9, p. 1825.

Article  Google Scholar 

L.H. Xie, J.S. Li, T.B. Zhang, and L. Song, Dehydrogenation steps and factors controlling desorption kinetics of a MgCe hydrogen storage alloy, Int. J. Hydrogen Energy, 42(2017), No. 33, p. 21121.

Article  CAS  Google Scholar 

G.H. Majzoobi and K. Rahmani, Mechanical characterization of Mg—B4C nanocomposite fabricated at different strain rates, Int. J. Miner. Metall. Mater., 27(2020), No. 2, p. 252.

Article  CAS  Google Scholar 

V.A. Yartys, O. Gutfleisch, V.V. Panasyuk, and I.R. Harris, Desorption characteristics of rare earth (R) hydrides (R = Y, Ce, Pr, Nd, Sm, Gd and Tb) in relation to the HDDR behaviour of R-Fe-based-compounds, J. Alloys Compd., 253–254(1997), p. 128.

C. Ren, Z.Z. Fang, C.S. Zhou, et al., In situ X-ray diffraction study of dehydrogenation of MgH2 with Ti-based additives, Int. J. Hydrogen Energy, 39(2014), No. 11, p. 5868.

Article  CAS  Google Scholar 

留言 (0)

沒有登入
gif