First-principles calculations of Ni-(Co)-Mn-Cu-Ti all-d-metal Heusler alloy on martensitic transformation, mechanical and magnetic properties

M. Callisti and T. Polcar, Microstructural evolution of nanometric Ti(NiCu)2 precipitates in annealed Ni-Ti-Cu thin films, Vacuum, 117(2015), p. 1.

Article  CAS  Google Scholar 

D.Y. Cong, W.X. Xiong, A. Planes, et al., Colossal elastocaloric effect in ferroelastic Ni-Mn-Ti alloys, Phys. Rev. Lett., 122(2019), No. 25, art. No. 255703.

Google Scholar 

J.D. Navarro-García, J.L. Sánchez Llamazares, and J.P.Camarillo-Garcia, Synthesis of highly dense spark plasma sintered magnetocaloric Ni-Mn-Sn alloys from melt-spun ribbons, Mater. Lett., 295(2021), art. No. 129857.

W.T. Chiu, P. Sratong-on, M. Tahara, V. Chernenko, and H. Hosoda, Large magnetostrains of Ni-Mn-Ga/silicone composite containing system of oriented 5M and 7M martensitic particles, Scripta Mater., 207(2022), art. No. 114265.

J. Liu, T. Gottschall, K.P. Skokov, J.D. Moore, and O. Gutfleisch, Giant magnetocaloric effect driven by structural transitions, Nat. Mater., 11(2012), No. 7, p. 620.

Article  CAS  Google Scholar 

A. Biesiekierski, J.X. Lin, Y.C. Li, D.H. Ping, Y. Yamabe-Mitarai, and C.E. Wen, Impact of ruthenium on mechanical properties, biological response and thermal processing of β-type Ti-Nb-Ru alloys, Acta Biomater., 48(2017), p. 461.

Article  CAS  Google Scholar 

X.L. Yang and J.X. Shang, Electronic mechanism of martensitic transformation in Nb-doped NiTi alloys: A first-principles investigation, ACS Omega, 6(2021), No. 34, p. 22033.

Article  CAS  Google Scholar 

R. Kainuma, Y. Imano, W. Ito, et al., Magnetic-field-induced shape recovery by reverse phase transformation, Nature, 439(2006), No. 7079, p. 957.

Article  CAS  Google Scholar 

S.Y. Yu, Z.X. Cao, L. Ma, et al., Realization of magnetic field-induced reversible martensitic transformation in NiCoMnGa alloys, Appl. Phys. Lett., 91(2007), No. 10, art. No. 102507.

Google Scholar 

M. Wuttig, L. Liu, K. Tsuchiya, and R.D. James, Occurrence of ferromagnetic shape memory alloys (invited), J. Appl. Phys., 87(2000), No. 9, p. 4707.

Article  CAS  Google Scholar 

J.A. Monroe, I. Karaman, B. Basaran, et al., Direct measurement of large reversible magnetic-field-induced strain in Ni-Co-Mn-In metamagnetic shape memory alloys, Acta Mater., 60(2012), No. 20, p. 6883.

Article  CAS  Google Scholar 

F.X. Hu, B.G. Shen, J.R. Sun, and G.H. Wu, Large magnetic entropy change in a Heusler alloy Ni52.6Mn23.1Ga24.3 single crystal, Phys. Rev. B, 64(2001), No. 13, art. No. 132412.

Google Scholar 

J. Du, Q. Zheng, W.J. Ren, W.J. Feng, X.G. Liu, and Z.D. Zhang, Magnetocaloric effect and magnetic-field-induced shape recovery effect at room temperature in ferromagnetic Heusler alloy Ni-Mn-Sb, J. Phys. D: Appl. Phys., 40(2007), No. 18, p. 5523.

Article  CAS  Google Scholar 

G.Y. Zhang, D. Li, C. Liu, et al., Giant low-field actuated caloric effects in a textured Ni43Mn47Sn10 alloy, Scripta Mater., 201(2021), art. No. 113947.

H. Wang, D. Li, G. Zhang, et al., Highly sensitive elastocaloric response in a directionally solidified Ni50Mn33In15.5Cu1.5 alloy with strong A preferred orientation, Intermetallics, 140(2022), art. No. 107379.

Y.J. Huang, Q.D. Hu, N.M. Bruno, et al., Giant elastocaloric effect in directionally solidified Ni-Mn-In magnetic shape memory alloy, Scripta Mater., 105(2015), p. 42.

Article  CAS  Google Scholar 

Z.Y. Wei, W. Sun, Q. Shen, et al., Elastocaloric effect of all-d-metal Heusler NiMnTi(Co) magnetic shape memory alloys by digital image correlation and infrared thermography, Appl. Phys. Lett., 114(2019), No. 10, art. No. 101903.

Google Scholar 

H.L. Yan, L.D. Wang, H.X. Liu, et al., Giant elastocaloric effect and exceptional mechanical properties in an all-d-metal Ni-Mn-Ti alloy: Experimental and ab-initio studies, Mater. Des., 184(2019), art. No. 108180.

Z.Y. Wei, E.K. Liu, J.H. Chen, et al., Realization of multifunctional shape-memory ferromagnets in all-d-metal Heusler phases, Appl. Phys. Lett., 107(2015), No. 2, art. No. 022406.

Google Scholar 

K. Liu, S.C. Ma, C.C. Ma, et al., Martensitic transformation and giant magneto-functional properties in all-d-metal Ni-Co-Mn-Ti alloy ribbons, J. Alloys Compd., 790(2019), p. 78.

Article  CAS  Google Scholar 

Z.Q. Guan, X.J. Jiang, J.L. Gu, et al., Large magnetocaloric effect and excellent mechanical properties near room temperature in Ni-Co-Mn-Ti non-textured polycrystalline alloys, Appl. Phys. Lett., 119(2021), No. 5, art. No. 051904.

Google Scholar 

A. Taubel, B. Beckmann, L. Pfeuffer, et al., Tailoring magnetocaloric effect in all-d-metal Ni-Co-Mn-Ti Heusler alloys: A combined experimental and theoretical study, Acta Mater., 201(2020), p. 425.

Article  CAS  Google Scholar 

X.Z. Liang, J. Bai, J.L. Gu, et al., Probing martensitic transformation, kinetics, elastic and magnetic properties of Ni2−xMn1.5In0.5Co alloys, J. Mater. Sci. Technol., 44(2020), p. 31.

Article  CAS  Google Scholar 

J. Hafner, Atomic-scale computational materials science, Acta Mater., 48(2000), No. 1, p. 71.

Article  CAS  Google Scholar 

G. Kresse and D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method, Phys. Rev. B, 59(1999), No. 3, p. 1758.

Article  CAS  Google Scholar 

P.E. Blöchl, Projector augmented-wave method, Phys. Rev. B, 50(1994), No. 24, p. 17953.

Article  Google Scholar 

G. Kern, G. Kresse, and J. Hafner, Ab initio calculation of the lattice dynamics and phase diagram of boron nitride, Phys. Rev. B, 59(1999), No. 13, p. 8551.

Article  CAS  Google Scholar 

J.P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett., 77(1996), No. 18, p. 3865.

Article  CAS  Google Scholar 

H.J. Monkhorst and J.D. Pack, Special points for Brillouin-zone integrations, Phys. Rev. B, 13(1976), No. 12, p. 5188.

Article  Google Scholar 

Y. Song, X. Chen, V. Dabade, T.W. Shield, and R.D. James, Enhanced reversibility and unusual microstructure of a phase-transforming material, Nature, 502(2013), No. 7469, p. 85.

Article  CAS  Google Scholar 

J. Cui, Y.S. Chu, O.O. Famodu, et al., Combinatorial search of thermoelastic shape-memory alloys with extremely small hysteresis width, Nat. Mater., 5(2006), No. 4, p. 286.

Article  CAS  Google Scholar 

Z.G. Wu, Z.H. Liu, H. Yang, Y. Liu, and G. Wu, Effect of Co addition on martensitic phase transformation and magnetic properties of Mn50Ni40−xIn10Cox polycrystalline alloys, Intermetallics, 19(2011), No. 12, p. 1839.

Article  CAS  Google Scholar 

Z.B Li, J.J. Yang, D. Li, et al., Tuning the reversible magnetocaloric effect in Ni-Mn-In-based alloys through Co and Cu Co-doping, Adv. Electron. Mater., 5(2019), No. 3, art. No. 1800845.

Google Scholar 

M. Kaya, S. Yildirim, E. Yüzüak, I. Dincer, R. Ellialtioglu, and Y. Elerman, The effect of the substitution of Cu for Mn on magnetic and magnetocaloric properties of Ni50Mn34In16, J. Magn. Magn. Mater., 368(2014), p. 191.

Article  CAS  Google Scholar 

S. Saritaş, M. Kaya, İ. Dinçer, and Y. Elerman, The structural, magnetic, and magnetocaloric properties of Ni43Mn46−xCuxIn11 (x = 0, 0.9, 1.3, and 2.3) Heusler alloys, Metall. Mater. Trans. A, 48(2017), No. 10, p. 5068.

Article  Google Scholar 

Z. Yang, D.Y. Cong, Y. Yuan, et al., Large room-temperature elastocaloric effect in a bulk polycrystalline Ni-Ti-Cu-Co alloy with low isothermal stress hysteresis, Appl. Mater. Today, 21(2020), art. No. 100844.

Z.Q. Guan, J. Bai, J.L. Gu, et al., First-principles investigation of B2 partial disordered structure, martensitic transformation, elastic and magnetic properties of all-d-metal Ni-Mn-Ti Heusler alloys, J. Mater. Sci. Technol., 68(2021), p. 103.

Article  CAS  Google Scholar 

C.C. Xiong, J. Bai, Y.S. Li, et al., First-principles investigation on phase stability, elastic and magnetic properties of boron doping in Ni-Mn-Ti alloy, Acta Metall. Sin. Engl. Lett., 35(2022), No. 7, p. 1175.

Article  CAS  Google Scholar 

Z.Q. Guan, J. Bai, Y. Zhang, et al., Revealing essence of magnetostructural coupling of Ni-Co-Mn-Ti alloys by first-principles calculations and experimental verification, Rare Met., 41(2022), No. 6, p. 1933.

Article  CAS  Google Scholar 

Z. Muthui, R. Musembi, J. Mwabora, and A. Kashyap, Perpendicular magnetic anisotropy in nearly fully compensated ferri-magnetic Heusler alloy Mn0.75Co1.25VIn: An ab initio study, J. Magn. Magn. Mater., 442(2017), p. 343.

Article  CAS  Google Scholar 

R.V.S. Prasad, M. Manivel Raja, and G. Phanikumar, Microstructure and magnetic properties of rapidly solidified Ni2(Mn,Fe)Ga Heusler alloys, Adv. Mater. Res., 74(2009), p. 215.

Article  CAS  Google Scholar 

Z.N. Ni, X.M. Guo, X.T. Liu, Y.Y. Jiao, F.B. Meng, and H.Z. Luo, Understanding the magnetic structural transition in all-d-metal Heusler alloy Mn2Ni1.25Co0.25Ti0.5, J. Alloys Compd., 775(2019), p. 427.

Article  CAS  Google Scholar 

J. Bai, J.M. Raulot, Y.D. Zhang, C. Esling, X. Zhao, and L. Zuo, Crystallographic, magnetic, and electronic structures of ferromagnetic shape memory alloys Ni2XGa (X = Mn, Fe, Co) from first-principles calculations, J. Appl. Phys., 109(2011), No. 1, art. No. 014908.

J. Bai, J.L. Wang, S.F. Shi, et al., Complete martensitic transformation sequence and magnetic properties of non-stoi-chiometric Ni2Mn1.2Ga0.8 alloy by first-principles calculations, J. Magn. Magn. Mater., 473(2019), p. 360.

Article  CAS  Google Scholar 

留言 (0)

沒有登入
gif