Numerical investigation of the mechanical behavior of the backfill—rock composite structure under triaxial compression

Y. Wang, Z.Q. Wang, A.X. Wu, L. Wang, Q. Na, C. Cao, and G.F. Yang, Experimental research and numerical simulation of the multi-field performance of cemented paste backfill: Review and future perspectives, Int. J. Miner. Metall. Mater., 30(2023), No. 2, p. 193.

Article  CAS  Google Scholar 

G.L. Xue, E. Yilmaz, W.D. Song, and S. Cao, Mechanical, flexural and microstructural properties of cement—tailings matrix composites: Effects of fiber type and dosage, Composites Part B, 172(2019), p. 131.

Article  CAS  Google Scholar 

E. Yilmaz, Stope depth effect on field behaviour and performance of cemented paste backfills, Int. J. Min. Reclam. Environ., 32(2018), No. 4, p. 273.

Article  CAS  Google Scholar 

T. Deschamps, M. Benzaazoua, and B. Bussière, Laboratory study of surface paste disposal for sulfidic tailings: Physical model testing, Miner. Eng., 24(2011), No. 8, p. 794.

Article  CAS  Google Scholar 

L. Li and P.Y. Yang, A numerical evaluation of continuous backfilling in cemented paste backfilled stope through an application of wick drains, Int. J. Min. Sci. Technol., 25(2015), No. 6, p. 897.

Article  CAS  Google Scholar 

H.J. Lu, C.C. Qi, Q.S. Chen, D.Q. Gan, Z.L. Xue, and Y.J. Hu, A new procedure for recycling waste tailings as cemented paste backfill to underground stopes and open pits, J. Clean. Prod., 188(2018), p. 601.

Article  Google Scholar 

C.C. Qi, Big data management in the mining industry, Int. J. Miner. Metall. Mater., 27(2020), No. 2, p. 131.

Article  Google Scholar 

B.D. Thompson, W.F. Bawden, and M.W. Grabinsky, In situ measurements of cemented paste backfill at the Cayeli Mine, Can. Geotech. J., 49(2012), No. 7, p. 755.

Article  Google Scholar 

T. Yilmaz, B. Ercikdi, and H. Deveci, Utilisation of construction and demolition waste as cemented paste backfill material for underground mine openings, J. Environ. Manage., 222(2018), p. 250.

Article  CAS  Google Scholar 

I.L.S. Libos and L. Cui, Effects of curing time, cement content, and saturation state on mode-I fracture toughness of cemented paste backfill, Eng. Fract. Mech., 235(2020), art. No. 107174.

G.L. Xue and E. Yilmaz, Strength, acoustic, and fractal behavior of fiber reinforced cemented tailings backfill subjected to triaxial compression loads, Constr. Build. Mater., 338(2022), art. No. 127667.

Z.Y. Zhao, S. Cao, and E. Yilmaz, Effect of layer thickness on the flexural property and microstructure of 3D-printed rhomboid polymer-reinforced cemented tailing composites, Int. J. Miner. Metall. Mater., 30(2023), No. 2, p. 236.

Article  Google Scholar 

H.Q. Jiang, M. Fall, E. Yilmaz, Y.H. Li, and L. Yang, Effect of mineral admixtures on flow properties of fresh cemented paste backfill: Assessment of time dependency and thixotropy, Powder Technol., 372(2020), p. 258.

Article  CAS  Google Scholar 

E. Sadrossadat, H. Basarir, G.H. Luo, A. Karrech, R. Durham, A. Fourie, and M.Elchalakani, Multi-objective mixture design of cemented paste backfill using particle swarm optimisation algorithm, Miner. Eng., 153(2020), art. No. 106385.

N.F. Liu, L. Cui, and Y. Wang, Analytical assessment of internal stress in cemented paste backfill, Adv. Mater. Sci. Eng., 2020(2020), art. No. 6666548.

M. Fall and M. Pokharel, Coupled effects of sulphate and temperature on the strength development of cemented tailings backfills: Portland cement-paste backfill, Cem. Concr. Compos., 32(2010), No. 10, p. 819.

Article  CAS  Google Scholar 

S. Cao, W.D. Song, and E. Yilmaz, Influence of structural factors on uniaxial compressive strength of cemented tailings backfill, Constr. Build. Mater., 174(2018), p. 190.

Article  Google Scholar 

E. Yilmaz, T. Belem, and M. Benzaazoua, Specimen size effect on strength behavior of cemented paste backfills subjected to different placement conditions, Eng. Geol., 185(2015), p. 52.

Article  Google Scholar 

Y.R. Wang, H.J. Lu, and J. Wu, Experimental investigation on strength and failure characteristics of cemented paste backfill—rock composite under uniaxial compression, Constr. Build. Mater., 304(2021), art. No. 124629.

M.L. Walske, H. McWilliam, J. Doherty, and A. Fourie, Influence of curing temperature and stress conditions on mechanical properties of cementing paste backfill, Can. Geotech. J., 53(2016), No. 1, p. 148.

Article  CAS  Google Scholar 

Z.M. Huang, Z.G. Ma, L. Zhang, P. Gong, Y.K. Zhang, and F. Liu, A numerical study of macro-mesoscopic mechanical properties of gangue backfill under biaxial compression, Int. J. Min. Sci. Technol., 26(2016), No. 2, p. 309.

Article  Google Scholar 

D. Martogi and S. Abedi, Microscale approximation of the elastic mechanical properties of randomly oriented rock cuttings, Acta Geotech., 15(2020), No. 12, p. 3511.

Article  Google Scholar 

X.S. Li, Y.C. Li, and S.S. Wu, Experimental investigation into the influences of weathering on the mechanical properties of sedimentary rocks, Geofluids, 2020(2020), art. No. 8893299.

S. Durmaz and D. Ülgen, Prediction of earthquake-induced permanent deformations for concrete-faced rockfill dams, Nat. Hazards, 105(2021), No. 1, p. 587.

Article  Google Scholar 

M. Bost, H. Mouzannar, F. Rojat, G. Coubard, and J.P. Rajot, Metric scale study of the bonded concrete-rock interface shear behaviour, KSCE J. Civ. Eng., 24(2020), No. 2, p. 390.

Article  Google Scholar 

V.N. Aptukov and S.V. Volegov, Modeling concentration of residual stresses and damages in salt rock cores, J. Min. Sci., 56(2020), No. 3, p. 331.

Article  Google Scholar 

R.J. Clément, Z. Lun, and G. Ceder, Cation-disordered rocksalt transition metal oxides and oxyfluorides for high energy lithium-ion cathodes, Energy Environ. Sci., 13(2020), No. 2, p. 345.

Article  Google Scholar 

Q. Ma, Y.L. Tan, X.S. Liu, Q.H. Gu, and X.B. Li, Effect of coal thicknesses on energy evolution characteristics of roof rock—coal—floor rock sandwich composite structure and its damage constitutive model, Composites Part B, 198(2020), art. No. 108086.

Y.R. Yang, X.P. Lai, P.F. Shan, and F. Cui, Comprehensive analysis of dynamic instability characteristics of steeply inclined coal-rock mass, Arab. J. Geosci., 13(2020), No. 6, art. No. 241.

K. Wang, F. Du, X. Zhang, L. Wang, and C.P. Xin, Mechanical properties and permeability evolution in gas-bearing coal-rock combination body under triaxial conditions, Environ. Earth Sci., 76(2017), No. 24, art. No. 815.

N.J.F. Koupouli, T. Belem, P. Rivard, and H. Effenguet, Direct shear tests on cemented paste backfill—rock wall and cemented paste backfill—backfill interfaces, J. Rock Mech. Geotech. Eng., 8(2016), No. 4, p. 472.

Article  Google Scholar 

Y. Zhang, Z.H. Zhang, L.J. Guo, and X.L. Du, Strength model of backfill—rock irregular interface based on fractal theory, Front. Mater., 8(2021), art. No. 792014.

Z.G. Xiu, S.H. Wang, Y.C. Ji, F.L. Wang, F.Y. Ren, and V.T. Nguyen, The effects of dry and wet rock surfaces on shear behavior of the interface between rock and cemented paste backfill, Powder Technol., 381(2021), p. 324.

Article  CAS  Google Scholar 

N. Falaknaz, M. Aubertin, and L. Li, Numerical investigation of the geomechanical response of adjacent backfilled stopes, Can. Geotech. J., 52(2015), No. 10, p. 1507.

Article  CAS  Google Scholar 

W.B. Xu, Y. Cao, and B.H. Liu, Strength efficiency evaluation of cemented tailings backfill with different stratified structures, Eng. Struct., 180(2019), p. 18.

Article  Google Scholar 

W.L. Wu, W.B. Xu, and J.P. Zuo, Effect of inclined interface angle on shear strength and deformation response of cemented paste backfill—rock under triaxial compression, Constr. Build. Mater., 279(2021), art. No. 122478.

C.A. Tang, and P.K. Kaiser, Numerical simulation of cumulative damage and seismic energy release during brittle rock failure—Part I: Fundamentals, Int. J. Rock Mech. Min. Sci., 35(1998), No. 2, p. 113.

Article  Google Scholar 

K. Ma, C.A. Tang, Z.Z. Liang, D.Y. Zhuang, and Q.B. Zhang, Stability analysis and reinforcement evaluation of high-steep rock slope by microseismic monitoring, Eng. Geol., 218(2017), p. 22.

Article  Google Scholar 

S.Y. Wang, S.W. Sloan, M.L. Huang, and C.A. Tang, Numerical study of failure mechanism of serial and parallel rock Pillars, Rock Mech. Rock Eng., 44(2011), No. 2, p. 179.

Article  Google Scholar 

P. Liang and H.J. Lu, Mechanical behaviour and failure characteristics of cemented paste backfill under lateral unloading condition, Int. J. Min. Miner. Eng., 11(2020), No. 1, art. No. 66.

Z.Z. Liang, H. Xing, S.Y. Wang, D.J. Williams, and C.A. Tang, A three-dimensional numerical investigation of the fracture of rock specimens containing a pre-existing surface flaw, Comput. Geotech., 45(2012), p. 19.

Article  Google Scholar 

B.Q. Li and H.H. Einstein, Comparison of visual and acoustic emission observations in a four point bending experiment on barre granite, Rock Mech. Rock Eng., 50(2017), No. 9, p. 2277.

Article  Google Scholar 

C.A. Tang, H. Liu, P.K.K. Lee, Y. Tsui, and L. Tham, Numerical studies of the influence of microstructure on rock failure in uniaxial compression—Part I: Effect of heterogeneity, Int. J. Rock Mech. Min. Sci., 37(2000), No. 4, p. 555.

Article  Google Scholar 

W.C. Zhu and C.A. Tang, Micromechanical model for simulating the fracture process of rock, Rock Mech. Rock Eng., 37(2004), No. 1, p. 25.

Article  Google Scholar 

G. Li and C.A. Tang, A statistical meso-damage mechanical method for modeling trans-scale progressive failure process of rock, Int. J. Rock Mech. Min. Sci., 74(2015), p. 133.

Article  Google Scholar 

X.M. Wei, L.J. Guo, X.L. Zhou, C.H. Li, and L.X. Zhang, Full sequence stress evolution law and prediction model of high stage cemented backfill, Rock Soil Mech., 41(2020), No. 11, p. 3613.

Google Scholar 

留言 (0)

沒有登入
gif