LRP6/filamentous-actin signaling facilitates osteogenic commitment in mechanically induced periodontal ligament stem cells

Aveic S, Craveiro RB, Wolf M, Fischer H. Current trends in in vitro modeling to mimic cellular crosstalk in periodontal tissue. Adv Healthc Mater. 2021;10(1): e2001269.

Article  Google Scholar 

Zhang X, Yuan X, Xu Q, Arioka M, Van Brunt LA, Shi Y, et al. Molecular basis for periodontal ligament adaptation to in vivo loading. J Dent Res. 2019;98(3):331–8.

Article  CAS  Google Scholar 

Wang K, Xu C, Xie X, Jing Y, Chen PJ, Yadav S, et al. Axin2+ PDL cells directly contribute to new alveolar bone formation in response to orthodontic tension force. J Dent Res. 2022;101(6):695–703.

Article  CAS  Google Scholar 

Liu AQ, Zhang LS, Chen J, Sui BD, Liu J, Zhai QM, et al. Mechanosensing by Gli1+ cells contributes to the orthodontic force-induced bone remodelling. Cell Prolif. 2020;53(5): e12810.

Article  CAS  Google Scholar 

Sun C, Janjic Rankovic M, Folwaczny M, Otto S, Wichelhaus A, Baumert U. Effect of tension on human periodontal ligament cells: systematic review and network analysis. Front Bioeng Biotech. 2021;9: 695053.

Article  Google Scholar 

Wang H, Feng C, Li M, Zhang Z, Liu J, Wei F. Analysis of lncRNAs-miRNAs-mRNAs networks in periodontal ligament stem cells under mechanical force. Oral Dis. 2021;27(2):325–37.

Article  Google Scholar 

Zhang Z, He Q, Yang S, Zhao X, Li X, Wei F. Mechanical force-sensitive lncRNA SNHG8 inhibits osteogenic differentiation by regulating EZH2 in hPDLSCs. Cell Signal. 2022;93: 110285.

Article  CAS  Google Scholar 

Chukkapalli SS, Lele TP. Periodontal cell mechanotransduction. Open Biol. 2018;8(9): 180053.

Article  Google Scholar 

Huang H, Yang R, Zhou Y. Mechanobiology of periodontal ligament stem cells in orthodontic tooth movement. Stem Cells Int. 2018;2018:6531216.

Article  Google Scholar 

Petzold J, Gentleman E. Intrinsic mechanical cues and their impact on stem cells and embryogenesis. Front Cell Dev Biol. 2021;9(8): 761871.

Article  Google Scholar 

Finch-Edmondson M, Sudol M. Framework to function: mechanosensitive regulators of gene transcription. Cell Mol Biol Lett. 2016;21:28.

Article  Google Scholar 

Jiang Y, Guan Y, Lan Y, Chen S, Li T, Zou S, et al. Mechanosensitive piezo1 in periodontal ligament cells promotes alveolar bone remodeling during orthodontic tooth movement. Front Physiol. 2021;12: 767136.

Article  Google Scholar 

Wang L, Liang H, Sun B, Mi J, Tong X, Wang Y, et al. Role of TRPC6 in periodontal tissue reconstruction mediated by appropriate stress. Stem Cell Res Ther. 2022;13(1):401.

Article  CAS  Google Scholar 

Jeon HH, Teixeira H, Tsai A. Mechanistic insight into orthodontic tooth movement based on animal studies: a critical review. J Clin Med. 2021;10(8):1733.

Article  CAS  Google Scholar 

Baron R, Kneissel M. WNT signaling in bone homeostasis and disease: from human mutations to treatments. Nat Med. 2013;19(2):179–92.

Article  CAS  Google Scholar 

You H, Li Q, Kong D, Liu X, Kong F, Zheng K, et al. The interaction of canonical Wnt/beta-catenin signaling with protein lysine acetylation. Cell Mol Biol Lett. 2022;27(1):7.

Article  CAS  Google Scholar 

Yu M, Fan Z, Wong SW, Sun K, Zhang L, Liu H, et al. Lrp6 dynamic expression in tooth development and mutations in oligodontia. J Dent Res. 2021;100(4):415–22.

Article  CAS  Google Scholar 

Yuan Y, Xie X, Jiang Y, Wei Z, Wang P, Chen F, et al. LRP6 is identified as a potential prognostic marker for oral squamous cell carcinoma via MALDI-IMS. Cell Death Dis. 2017;8(9): e3035.

Article  Google Scholar 

Lim WH, Liu B, Mah S, Yin X, Helms JA. Alveolar bone turnover and periodontal ligament width are controlled by Wnt. J Periodontol. 2015;86(2):319–26.

Article  Google Scholar 

Mineo C. Lipoprotein receptor signalling in atherosclerosis. Cardiovasc Res. 2020;116(7):1254–74.

Article  CAS  Google Scholar 

Gu X, Li X, Jin Y, Zhang Z, Li M, Liu D, et al. CDR1as regulated by hnRNPM maintains stemness of periodontal ligament stem cells via miR-7/KLF4. J Cell Mol Med. 2021;25(9):4501–15.

Article  CAS  Google Scholar 

Jia Q, Bu Y, Wang Z, Chen B, Zhang Q, Yu S, et al. Maintenance of stemness is associated with the interation of LRP6 and heparin-binding protein CCN2 autocrined by hepatocellular carcinoma. J Exp Clin Canc Res. 2017;36(1):117.

Article  Google Scholar 

Harris AR, Jreij P, Fletcher DA. Mechanotransduction by the actin cytoskeleton: converting mechanical stimuli into biochemical signals. Annu Rev Biophys. 2018;47:617–31.

Article  CAS  Google Scholar 

Svetina S. Red blood cell shape and deformability in the context of the functional evolution of its membrane structure. Cell Mol Biol Lett. 2012;17(2):171–81.

Article  CAS  Google Scholar 

Pan J, Wang T, Wang L, Chen W, Song M, Acott TS. Cyclic strain-induced cytoskeletal rearrangement of human periodontal ligament cells via the Rho signaling pathway. PLoS ONE. 2014;9(3): e91580.

Article  Google Scholar 

Huelter-Hassler D, Tomakidi P, Steinberg T, Jung BA. Orthodontic strain affects the Hippo-pathway effector YAP concomitant with proliferation in human periodontal ligament fibroblasts. Eur J Orthodont. 2017;39(3):251–7.

Article  Google Scholar 

Yang Y, Wang B, Chang M, Wan Z, Han G. Cyclic stretch enhances osteogenic differentiation of human periodontal ligament cells via YAP activation. Biomed Res Int. 2018;2018:2174824.

Article  Google Scholar 

Huang L, Liu B, Cha JY, Yuan G, Kelly M, Singh G, et al. Mechanoresponsive properties of the periodontal ligament. J Dent Res. 2016;95(4):467–75.

Article  CAS  Google Scholar 

Vining KH, Mooney DJ. Mechanical forces direct stem cell behaviour in development and regeneration. Nat Rev Mol Cell Bio. 2017;18(12):728–42.

Article  CAS  Google Scholar 

Qin L, Liu W, Cao H, Xiao G. Molecular mechanosensors in osteocytes. Bone Res. 2020;8:23.

Article  CAS  Google Scholar 

Yang T, Williams BO. Low-density lipoprotein receptor-related proteins in skeletal development and disease. Physiol Rev. 2017;97(3):1211–28.

Article  CAS  Google Scholar 

Liang B, Burley G, Lin S, Shi Y. Osteoporosis pathogenesis and treatment: existing and emerging avenues. Cell Mol Biol Lett. 2022;27(1):72.

Article  Google Scholar 

Li C, Williams BO, Cao X, Wan M. LRP6 in mesenchymal stem cells is required for bone formation during bone growth and bone remodeling. Bone Res. 2014;2:14006.

Article  Google Scholar 

Whyte MP, McAlister WH, Zhang F, Bijanki VN, Nenninger A, Gottesman GS, et al. New explanation for autosomal dominant high bone mass: mutation of low-density lipoprotein receptor-related protein 6. Bone. 2019;127:228–43.

Article  CAS  Google Scholar 

Song L, Li Y, Wang K, Wang Y, Molotkov A, Gao L, et al. Lrp6-mediated canonical Wnt signaling is required for lip formation and fusion. Development. 2009;136(18):3161–71.

Article  CAS  Google Scholar 

Zhang L, Yu M, Sun K, Fan Z, Liu H, Feng H, et al. Rare phenotype: hand preaxial polydactyly associated with LRP6-related tooth agenesis in humans. NPJ Genom Med. 2021;6(1):93.

Article  CAS  Google Scholar 

Silva GO, Zhang Z, Cucco C, Oh M, Camargo CHR, Nör JE. Lipoprotein receptor-related protein 6 signaling is necessary for vasculogenic differentiation of human dental pulp stem cells. J Endodont. 2017;43(9S):S25–30.

Article  Google Scholar 

Krishnan V, Davidovitch Z. On a path to unfolding the biological mechanisms of orthodontic tooth movement. J Dent Res. 2009;88(7):597–608.

Article  CAS  Google Scholar 

Wang L, Chai Y, Li C, Liu H, Su W, Liu X, et al. Oxidized phospholipids are ligands for LRP6. Bone Res. 2018;6:22.

Article  CAS  Google Scholar 

Xi X, Zhao Y, Liu H, Li Z, Chen S, Liu D. Nrf2 activation is involved in osteogenic differentiation of periodontal ligament stem cells under cyclic mechanical stretch. Exp Cell Res. 2021;403(2): 112598.

Article  CAS  Google Scholar 

Meng X, Wang W, Wang X. MicroRNA-34a and microRNA-146a target CELF3 and suppress the osteogenic differentiation of periodontal ligament stem cells under cyclic mechanical stretch. J Dent Sci. 2022;17(3):1281–91.

Article  Google Scholar 

Liu J, Cui Z, Wang F, Yao Y, Yu G, Liu J, et al. Lrp5 and Lrp6 are required for maintaining self-renewal and differentiation of hematopoietic stem cells. FASEB J. 2019;33(4):5615–25.

Article  CAS  Google Scholar 

Li Y, Chen M, Hu J, Sheng R, Lin Q, He X, et al. Volumetric compression induces intracellular crowding to control intestinal organoid growth via Wnt/β-Catenin signaling. Cell Stem Cell. 2021;28(1):170–2.

Article  Google Scholar 

Zhong Z, Baker JJ, Zylstra-Diegel CR, Williams BO. Lrp5 and Lrp6 play compensatory roles in mouse intestinal development. J Cell Biochem. 2012;113(1):31–8.

Article  CAS  Google Scholar 

Gray JD, Kholmanskikh S, Castaldo BS, Hansler A, Chung H, Klotz B, et al. LRP6 exerts non-canonical effects on Wnt signaling during neural tube closure. Hum Mol Genet. 2013;22(21):4267–81.

Article  CAS  Google Scholar 

Yao Q, An Y, Hou W, Cao YN, Yao MF, Ma NN, et al. LRP6 promotes invasion and metastasis of colorectal cancer through cytoskeleton dynamics. Oncotarget. 2017;8(65):109632–45.

Article  Google Scholar 

Lian G, Dettenhofer M, Lu J, Downing M, Chenn A, Wong T, et al. FilaminA- and Formin2-dependent endocytosis regulates proliferation via the canonical Wnt pathway. Development. 2016;143(23):4509–20.

留言 (0)

沒有登入
gif