Microsatellite instability assessment is instrumental for Predictive, Preventive and Personalised Medicine: status quo and outlook

Aaltonen LA, Peltomäki P, Leach FS, Sistonen P, Pylkkänen L, Mecklin JP, et al. Clues to the pathogenesis of familial colorectal cancer. Science. 1993;260:812–6. https://doi.org/10.1126/science.8484121.

Article  CAS  Google Scholar 

Ionov Y, Peinado MA, Malkhosyan S, Shibata D, Perucho M. Ubiquitous somatic mutations in simple repeated sequences reveal a new mechanism for colonic carcinogenesis. Nature. 1993;363:558–61. https://doi.org/10.1038/363558a0.

Article  CAS  Google Scholar 

Thibodeau SN, Bren G, Schaid D. Microsatellite instability in cancer of the proximal colon. Science. 1993;260:816–9. https://doi.org/10.1126/science.8484122.

Article  CAS  Google Scholar 

Chambers GK, MacAvoy ES. Microsatellites: consensus and controversy. Comp Biochem Physiol B Biochem Mol Biol. 2000;126:455–76. https://doi.org/10.1016/s0305-0491(00)00233-9.

Article  CAS  Google Scholar 

Lindstrand A, Eisfeldt J, Pettersson M, Carvalho CMB, Kvarnung M, Grigelioniene G, et al. From cytogenetics to cytogenomics: whole-genome sequencing as a first-line test comprehensively captures the diverse spectrum of disease-causing genetic variation underlying intellectual disability. Genome Med. 2019;11:68. https://doi.org/10.1186/s13073-019-0675-1.

Article  CAS  Google Scholar 

Press MO, Carlson KD, Queitsch C. The overdue promise of short tandem repeat variation for heritability. Trends Genet. 2014;30:504–12. https://doi.org/10.1016/j.tig.2014.07.008.

Article  CAS  Google Scholar 

Xiao W, Wu L, Yavas G, Simonyan V, Ning B, Hong H. Challenges, solutions, and quality metrics of personal genome assembly in advancing precision medicine. Pharmaceutics. 2016;8:15. https://doi.org/10.3390/pharmaceutics8020015.

Article  CAS  Google Scholar 

Boland CR, Thibodeau SN, Hamilton SR, Sidransky D, Eshleman JR, Burt RW, et al. A National Cancer Institute Workshop on Microsatellite Instability for cancer detection and familial predisposition: development of international criteria for the determination of microsatellite instability in colorectal cancer. Cancer Res. 1998;58:5248–57.

Boland CR, Goel A. Microsatellite instability in colorectal cancer. Gastroenterology. 2010;138:2073-87.e3. https://doi.org/10.1053/j.gastro.2009.12.064.

Article  CAS  Google Scholar 

Buglyó G, Styk J, Pös O, Csók Á, Repiska V, Soltész B, et al. Liquid biopsy as a source of nucleic acid biomarkers in the diagnosis and management of Lynch syndrome. Int J Mol Sci. 2022;23:18. https://doi.org/10.3390/ijms23084284.

Article  CAS  Google Scholar 

Bacher JW, Sievers CK, Albrecht DM, Grimes IC, Weiss JM, Matkowskyj KA, et al. Improved detection of microsatellite instability in early colorectal lesions. PLoS One. 2015;10:e0132727. https://doi.org/10.1371/journal.pone.0132727.

Article  CAS  Google Scholar 

Sepulveda AR, Hamilton SR, Allegra CJ. Molecular biomarkers for the evaluation of colorectal cancer: guideline from the American Society for Clinical Pathology, College of American Pathologists, Association for Molecular Pathology, and the American Society of Clinical Oncology. J Clin Oncology. 2017;147:221–60. https://doi.org/10.1093/ajcp/aqw209.

Article  CAS  Google Scholar 

Hirotsu Y, Nagakubo Y, Amemiya K, Oyama T, Mochizuki H, Omata M. Microsatellite instability status is determined by targeted sequencing with MSIcall in 25 cancer types. Clin Chim Acta. 2020;502:207–13. https://doi.org/10.1016/j.cca.2019.11.002.

Article  CAS  Google Scholar 

Redford L, Alhilal G, Needham S, O’Brien O, Coaker J, Tyson J, et al. A novel panel of short mononucleotide repeats linked to informative polymorphisms enabling effective high volume low cost discrimination between mismatch repair deficient and proficient tumours. PLoS One. 2018;13:e0203052. https://doi.org/10.1371/journal.pone.0203052.

Article  CAS  Google Scholar 

Phipps AI, Limburg PJ, Baron JA, Burnett-Hartman AN, Weisenberger DJ, Laird PW, et al. Association between molecular subtypes of colorectal cancer and patient survival. Gastroenterology. 2015;148:77-87.e2. https://doi.org/10.1053/j.gastro.2014.09.038.

Article  CAS  Google Scholar 

Battaglin F, Naseem M, Lenz H-J, Salem ME. Microsatellite instability in colorectal cancer: overview of its clinical significance and novel perspectives. Clin Adv Hematol Oncol. 2018;16:735–45.

Google Scholar 

Janssens JP, Schuster K, Voss A. Preventive, predictive, and personalized medicine for effective and affordable cancer care. EPMA J. 2018;9:113–23. https://doi.org/10.1007/s13167-018-0130-1.

Article  Google Scholar 

Bizzarri M, Fedeli V, Monti N, Cucina A, Jalouli M, Alwasel SH, et al. Personalization of medical treatments in oncology: time for rethinking the disease concept to improve individual outcomes. EPMA J. 2021;12:545–58. https://doi.org/10.1007/s13167-021-00254-1.

Article  Google Scholar 

Modica I, Soslow RA, Black D, Tornos C, Kauff N, Shia J. Utility of immunohistochemistry in predicting microsatellite instability in endometrial carcinoma. Am J Surg Pathol. 2007;31:744–51. https://doi.org/10.1097/01.pas.0000213428.61374.06.

Article  Google Scholar 

Shia J. Immunohistochemistry versus microsatellite instability testing for screening colorectal cancer patients at risk for hereditary nonpolyposis colorectal cancer syndrome. Part I. The utility of immunohistochemistry. J Mol Diagn. 2008;10:293–300. https://doi.org/10.2353/jmol2008.080031.

Article  Google Scholar 

Samaison L, Grall M, Staroz F, Uguen A. Microsatellite instability diagnosis using the fully automated Idylla platform: feasibility study of an in-house rapid molecular testing ancillary to immunohistochemistry in pathology laboratories. J Clin Pathol. 2019;72:830–5. https://doi.org/10.1136/jclinpath-2019-205935.

Article  CAS  Google Scholar 

Dietmaier W, Hofstädter F. Detection of microsatellite instability by real time PCR and hybridization probe melting point analysis. Lab Invest. 2001;81:1453–6. https://doi.org/10.1038/labinvest.3780358.

Article  CAS  Google Scholar 

Bodrova TA, Kostyushev DS, Antonova EN, Slavin S, Gnatenko DA, Bocharova MO, et al. Introduction into PPPM as a new paradigm of public health service: an integrative view. EPMA J. 2012;3:16. https://doi.org/10.1186/1878-5085-3-16.

Article  Google Scholar 

Tieng FYF, Abu N, Lee L-H, Ab Mutalib N-S. Microsatellite instability in colorectal cancer liquid biopsy-current updates on its potential in non-invasive detection, prognosis and as a predictive marker. Diagnostics. 2021;11:544. https://doi.org/10.3390/diagnostics11030544.

Article  CAS  Google Scholar 

Reyes GX, Schmidt TT, Kolodner RD, Hombauer H. New insights into the mechanism of DNA mismatch repair. Chromosoma. 2015;124:443–62. https://doi.org/10.1007/s00412-015-0514-0.

Article  CAS  Google Scholar 

Kunkel TA, Erie DA. Eukaryotic mismatch repair in relation to DNA replication. Annu Rev Genet. 2015;49:291–313. https://doi.org/10.1146/annurev-genet-112414-054722.

Article  CAS  Google Scholar 

Nagel ZD, Chaim IA, Samson LD. Inter-individual variation in DNA repair capacity: a need for multi-pathway functional assays to promote translational DNA repair research. DNA Repair. 2014;19:199–213. https://doi.org/10.1016/j.dnarep.2014.03.009.

Article  CAS  Google Scholar 

Tamura K, Kaneda M, Futagawa M, Takeshita M, Kim S, Nakama M, et al. Genetic and genomic basis of the mismatch repair system involved in Lynch syndrome. Int J Clin Oncol. 2019;24:999–1011. https://doi.org/10.1007/s10147-019-01494-y.

Article  Google Scholar 

Pino MS, Mino-Kenudson M, Wildemore BM, Ganguly A, Batten J, Sperduti I, et al. Deficient DNA mismatch repair is common in Lynch syndrome-associated colorectal adenomas. J Mol Diagn. 2009;11:238–247. https://doi.org/10.2353/jmoldx.2009.080142

Lynch HT, Snyder CL, Shaw TG, Heinen CD, Hitchins MP. Milestones of Lynch syndrome: 1895–2015. Nat Rev Cancer. 2015;15:181–94. https://doi.org/10.1038/nrc3878.

Article  CAS  Google Scholar 

De’ Angelis GL, Bottarelli L, Azzoni C, De’ Angelis N, Leandro G, Di Mario F, et al. Microsatellite instability in colorectal cancer. Acta Biomed. 2018;89:97–101. https://doi.org/10.23750/abm.v89i9-S.7960.

Article  Google Scholar 

Kunkel TA. Evolving views of DNA replication (in)fidelity. Cold Spring Harb Symp Quant Biol. 2009;74:91–101. https://doi.org/10.1101/sqb.2009.74.027.

Article  CAS  Google Scholar 

Ganai RA, Johansson E. DNA replication-a matter of fidelity. Mol Cell. 2016;62:745–55. https://doi.org/10.1016/j.molcel.2016.05.003.

Article  CAS  Google Scholar 

Liu D, Keijzers G, Rasmussen LJ. DNA mismatch repair and its many roles in eukaryotic cells. Mutat Res. 2017;773:174–87. https://doi.org/10.1016/j.mrrev.2017.07.001.

Article  CAS  Google Scholar 

Andrianova MA, Bazykin GA, Nikolaev SI, Seplyarskiy VB. Human mismatch repair system balances mutation rates between strands by removing more mismatches from the lagging strand. Genome Res. 2017;27:1336–43. https://doi.org/10.1101/gr.219915.116.

Article  CAS  Google Scholar 

Haradhvala NJ, Kim J, Maruvka YE, Polak P, Rosebrock D, Livitz D, et al. Distinct mutational signatures characterize concurrent loss of polymerase proofreading and mismatch repair. Nat Commun. 2018;9:1746. https://doi.org/10.1038/s41467-018-04002-4.

Article  CAS  Google Scholar 

Gupta D, Heinen CD. The mismatch repair-dependent DNA damage response: mechanisms and implications. DNA Repair. 2019;78:60–9. https://doi.org/10.1016/j.dnarep.2019.03.009.

Article  CAS  Google Scholar 

Groothuizen FS, Sixma TK. The conserved molecular machinery in DNA mismatch repair enzyme structures. DNA Repair. 2016;38:14–23. https://doi.org/10.1016/j.dnarep.2015.11.012.

Article  CAS  Google Scholar 

do Amaral-Silva G, do Amaral-Silva GK, Martins MD, Pontes HAR, Fregnani ER, Lopes MA, et al. Mismatch repair system proteins in oral benign and malignant lesions. J Oral Pathol Med. 2017;46:241–5. https://doi.org/10.1111/jop.12484.

Article  Google Scholar 

Radvanszky J, Hyblova M, Radvanska E, Spalek P, Valachova A, Magyarova G, et al. Characterisation of non-pathogenic premutation-range myotonic dystrophy type 2 alleles. J Clin Med Res. 2021;10:3934. https://doi.org/10.3390/jcm10173934.

Radvanszky J, Surovy M, Polak E, Kadasi L. Uninterrupted CCTG tracts in the myotonic dystrophy type 2 associated locus. Neuromuscul Disord. 2013;23:591–8. https://doi.org/10.1016/j.nmd.2013.02.013.

Article  Google Scholar 

Depienne C, Mandel J-L. 30 years of repeat expansion disorders: what have we learned and what are the remaining challenges? Am J Hum Genet. 2021;108:764–85. https://doi.org/10.1016/j.ajhg.2021.03.011.

Article  CAS  Google Scholar 

Kim T-M, Laird PW, Park PJ. The landscape of microsatellite instability in colorectal and endometrial cancer genomes. Cell. 2013;155:858–68. https://doi.org/10.1016/j.cell.2013.10.015.

Article  CAS  Google Scholar 

Cortes-Ciriano I, Lee S, Park W-Y, Kim T-M, Park PJ. A molecular portrait of microsatellite instability across multiple cancers. Nat Commun. 2017;8:15180. https://doi.org/10.1038/ncomms15180.

Article  CAS 

留言 (0)

沒有登入
gif