Phthalates impact on the epigenetic factors contributed specifically by the father at fertilization

Ostermeier GC, Miller D, Huntriss JD, Diamond MP, Krawetz SA. Delivering spermatozoan RNA to the oocyte. Nature. 2004;429(6988):154.

Article  CAS  Google Scholar 

Godia M, Swanson G, Krawetz SA. A history of why fathers’ RNA matters. Biol Reprod. 2018;99(1):147–59.

Article  Google Scholar 

Estill MS, Hauser R, Krawetz SA. RNA element discovery from germ cell to blastocyst. Nucleic Acids Res. 2019;47(5):2263–75.

Article  CAS  Google Scholar 

Swanson G, Estill M, Diamond MP, Legro RS, Coutifaris C, Barnhart MD, et al. Human Chromatin remodeler cofactor interactor, eraser and writer sperm RNAs responding to obesity. Epigenetics. 2019. https://doi.org/10.1080/15592294.2019.1644880.

Article  Google Scholar 

Estill M, Hauser R, Nassan FL, Moss A, Krawetz SA. The effects of di-butyl phthalate exposure from medications on human sperm RNA among men. Nat Sci Rep. 2019;9:1–3.

CAS  Google Scholar 

Gapp K, Jawaid A, Sarkies P, Bohacek J, Pelczar P, Prados J, et al. Implication of sperm RNAs in transgenerational inheritance of the effects of early trauma in mice. Nat Neurosci. 2014;17(5):667–9.

Article  CAS  Google Scholar 

Donkin I, Versteyhe S, Ingerslev LR, Qian K, Mechta M, Nordkap L, et al. Obesity and bariatric surgery drive epigenetic variation of spermatozoa in humans. Cell Metab. 2016;23(2):369–78.

Article  CAS  Google Scholar 

Grandjean V, Fourré S, De Abreu DAF, Derieppe M-A, Remy J-J, Rassoulzadegan M. RNA-mediated paternal heredity of diet-induced obesity and metabolic disorders. Sci Rep. 2015;5(1):1–9.

Article  Google Scholar 

de Castro BT, Ingerslev LR, Alm PS, Versteyhe S, Massart J, Rasmussen M, et al. High-fat diet reprograms the epigenome of rat spermatozoa and transgenerationally affects metabolism of the offspring. Mol Metab. 2016;5(3):184–97.

Article  Google Scholar 

Chen Q, Yan M, Cao Z, Li X, Zhang Y, Shi J, et al. Sperm tsRNAs contribute to intergenerational inheritance of an acquired metabolic disorder. Science. 2016;351(6271):397–400.

Article  CAS  Google Scholar 

Carone BR, Fauquier L, Habib N, Shea JM, Hart CE, Li R, et al. Paternally induced transgenerational environmental reprogramming of metabolic gene expression in mammals. Cell. 2010;143(7):1084–96.

Article  CAS  Google Scholar 

Marcho C, Oluwayiose OA, Pilsner JR. The preconception environment and sperm epigenetics. Andrology. 2020;8(4):924–42.

Article  Google Scholar 

Hauser R, Calafat AM. Phthalates and human health. Occup Environ Med. 2005;62(11):806–18.

Article  CAS  Google Scholar 

Lyche JL, Gutleb AC, Bergman Å, Eriksen GS, Murk AJ, Ropstad E, et al. Reproductive and developmental toxicity of phthalates. J Toxicol Environ Health, Part B. 2009;12(4):225–49.

Article  CAS  Google Scholar 

Nassan FL, Coull BA, Gaskins AJ, Williams MA, Skakkebaek NE, Ford JB, et al. Personal care product use in men and urinary concentrations of select phthalate metabolites and parabens: results from the environment and reproductive health (EARTH) study. Environ Health Perspect. 2017;125(8):087012.

Article  Google Scholar 

Hauser R, Duty S, Godfrey-Bailey L, Calafat AM. Medications as a source of human exposure to phthalates. Environ Health Perspect. 2004;112(6):751–3.

Article  Google Scholar 

Nassan FL, Korevaar TIM, Coull BA, Skakkebæk NE, Krawetz SA, Estill M, et al. Dibutyl-phthalate exposure from mesalamine medications and serum thyroid hormones in men. Int J Hyg Environ Health. 2019;222(1):101–10.

Article  CAS  Google Scholar 

Hernández-Díaz S, Mitchell AA, Kelley KE, Calafat AM, Hauser R. Medications as a potential source of exposure to phthalates in the US population. Environ Health Perspect. 2009;117(2):185–9.

Article  Google Scholar 

Bloom M, Whitcomb B, Chen Z, Ye A, Kannan K, Buck LG. Associations between urinary phthalate concentrations and semen quality parameters in a general population. Hum Reprod. 2015;30(11):2645–57.

Article  CAS  Google Scholar 

Wang Y-X, You L, Zeng Q, Sun Y, Huang Y-H, Wang C, et al. Phthalate exposure and human semen quality: Results from an infertility clinic in China. Environ Res. 2015;142:1–9.

Article  CAS  Google Scholar 

Wu H, Ashcraft L, Whitcomb BW, Rahil T, Tougias E, Sites CK, et al. Parental contributions to early embryo development: influences of urinary phthalate and phthalate alternatives among couples undergoing IVF treatment. Hum Reprod. 2017;32(1):65–75.

CAS  Google Scholar 

Louis GMB, Sundaram R, Schisterman EF, Sweeney A, Lynch CD, Kim S, et al. Semen quality and time to pregnancy: the longitudinal investigation of fertility and the environment study. Fertil Steril. 2014;101(2):453–62.

Article  Google Scholar 

Nassan FL, Coull BA, Skakkebaek NE, Williams MA, Dadd R, Mínguez-Alarcón L, et al. A crossover-crossback prospective study of dibutyl-phthalate exposure from mesalamine medications and semen quality in men with inflammatory bowel disease. Environ Int. 2016;95:120–30.

Article  CAS  Google Scholar 

Centers for Disease Control and Prevention, Fourth National Report on Human Exposure to Environmental Chemicals: CDC. 2021 http://www.cdc.gov/biomonitoring/pdf/FourthReport_UpdatedTables_Feb2015.pdf. Accessed 20 Aug 2022

Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13(11):2498–504.

Article  CAS  Google Scholar 

Swanson GM, Estill MS, Krawetz SA. The transcript integrity index (TII) provides a standard measure of sperm RNA. Syst Biol Reprod Med. 2022;68(4):258–71.

Article  CAS  Google Scholar 

Niki T, Takahashi-Niki K, Taira T, Iguchi-Ariga SM, Ariga H. DJBP: a novel DJ-1-binding protein, negatively regulates the androgen receptor by recruiting histone deacetylase complex, and DJ-1 antagonizes this inhibition by abrogation of this complex. Mol Cancer Res. 2003;1(4):247–61.

CAS  Google Scholar 

Jin W. Novel insights into PARK7 (DJ-1), a potential anti-cancer therapeutic target, and implications for cancer progression. J Clin Med. 2020;9(5):1256.

Article  CAS  Google Scholar 

Medvedeva YA, Lennartsson A, Ehsani R, Kulakovskiy IV, Vorontsov IE, Panahandeh P, et al. EpiFactors: a comprehensive database of human epigenetic factors and complexes. Database (Oxford). 2015;2015:bav067.

Article  Google Scholar 

Fujiki R, Chikanishi T, Hashiba W, Ito H, Takada I, Roeder RG, et al. GlcNAcylation of a histone methyltransferase in retinoic-acid-induced granulopoiesis. Nature. 2009;459(7245):455–9.

Article  CAS  Google Scholar 

Schwartz YB, Pirrotta V. A new world of Polycombs: unexpected partnerships and emerging functions. Nat Rev Genet. 2013;14(12):853–64.

Article  CAS  Google Scholar 

Gao Z, Zhang J, Bonasio R, Strino F, Sawai A, Parisi F, et al. PCGF homologs, CBX proteins, and RYBP define functionally distinct PRC1 family complexes. Mol Cell. 2012;45(3):344–56.

Article  CAS  Google Scholar 

Banga SS, Peng L, Dasgupta T, Palejwala V, Ozer HL. PHF10 is required for cell proliferation in normal and SV40-immortalized human fibroblast cells. Cytogenet Genome Res. 2009;126(3):227–42.

Article  CAS  Google Scholar 

Staahl BT, Crabtree GR. Creating a neural specific chromatin landscape by npBAF and nBAF complexes. Curr Opin Neurobiol. 2013;23(6):903–13.

Article  CAS  Google Scholar 

Phelan ML, Sif S, Narlikar GJ, Kingston RE. Reconstitution of a core chromatin remodeling complex from SWI/SNF subunits. Mol Cell. 1999;3(2):247–53.

Article  CAS  Google Scholar 

Foster PM, Mylchreest E, Gaido KW, Sar M. Effects of phthalate esters on the developing reproductive tract of male rats. Hum Reprod Update. 2001;7(3):231–5.

Article  CAS  Google Scholar 

Izhar L, Adamson B, Ciccia A, Lewis J, Pontano-Vaites L, Leng Y, et al. A systematic analysis of factors localized to damaged chromatin reveals PARP-dependent recruitment of transcription factors. Cell Rep. 2015;11(9):1486–500.

Article  CAS  Google Scholar 

Song K, Backs J, McAnally J, Qi X, Gerard RD, Richardson JA, et al. The transcriptional coactivator CAMTA2 stimulates cardiac growth by opposing class II histone deacetylases. Cell. 2006;125(3):453–66.

Article  CAS  Google Scholar 

Martin M, Kettmann R, Dequiedt F. Class IIa histone deacetylases: regulating the regulators. Oncogene. 2007;26(37):5450–67.

Article  CAS  Google Scholar 

Qian M-X, Pang Y, Liu Cui H, Haratake K, Du B-Y, Ji D-Y, et al. Acetylation-mediated proteasomal degradation of core histones during DNA repair and spermatogenesis. Cell. 2013;153(5):1012–24.

Article  CAS  Google Scholar 

Ustrell V, Hoffman L, Pratt G, Rechsteiner M. PA200, a nuclear proteasome activator involved in DNA repair. EMBO J. 2002;21(13):3516–25.

Article  CAS  Google Scholar 

Srinivas H, Xia D, Moore NL, Uray IP, Kim H, Ma L, et al. Akt phosphorylates and suppresses the transactivation of retinoic acid receptor alpha. Biochem J. 2006;395(3):653–62.

Article  CAS  Google Scholar 

Li XS, Trojer P, Matsumura T, Treisman JE, Tanese N. Mammalian SWI/SNF-A subunit BAF250/ARID1 is an E3 ubiquitin ligase that targets histone H2B. Mol Cell Biol. 2010;30(7):1673–88.

Article  CAS  Google Scholar 

Hoyer J, Ekici Arif B, Endele S, Popp B, Zweier C, Wiesener A, et al. Haploinsufficiency of ARID1B, a member of the SWI/SNF-A chromatin-remodeling complex, is a frequent cause of intellectual disability. Am J Hum Genet. 2012;90(3):565–72.

Article  CAS  Google Scholar 

Pause A, Lee S, Worrell RA, Chen DY, Burgess WH, Linehan WM, et al. The von Hippel-Lindau tumor-suppressor gene product forms a stable complex with human CUL-2, a member of the Cdc53 family of proteins. Proc Natl Acad Sci USA. 1997;94(6):2156–61.

留言 (0)

沒有登入
gif