Accelerated ageing and coronary microvascular dysfunction in chronic heart failure in Tgαq*44 mice

Harper S. Economic and social implications of aging societies. Science. 2014;346:587–91. https://doi.org/10.1126/science.1254405.

Article  CAS  Google Scholar 

Lakatta EG, Levy D. Arterial and cardiac aging: major shareholders in cardiovascular disease enterprises. Circulation. 2003;107:346–54. https://doi.org/10.1161/01.CIR.0000048893.62841.F7.

Article  Google Scholar 

Dassanayaka S, Jones SP. Recent developments in heart failure. Circ Res. 2015;117:e58-63. https://doi.org/10.1161/CIRCRESAHA.115.305765.

Article  CAS  Google Scholar 

Benjamin EJ, Muntner P, Alonso A, Bittencourt MS, Callaway CW, Carson AP, et al. Heart disease and stroke statistics-2019 update: a report from the American Heart Association. Circulation. 2019;139:e56-528. https://doi.org/10.1161/CIR.0000000000000659.

Article  Google Scholar 

Kemp CD, Conte JV. The pathophysiology of heart failure. Cardiovasc Pathol. 2012;21:365–71. https://doi.org/10.1016/j.carpath.2011.11.007.

Article  CAS  Google Scholar 

Paulus WJ, Tschöpe C. A novel paradigm for heart failure with preserved ejection fraction. J Am Coll Cardiol. 2013;62:263–71. https://doi.org/10.1016/j.jacc.2013.02.092.

Article  Google Scholar 

Dryer K, Gajjar M, Narang N, Lee M, Paul J, Shah AP, et al. Coronary microvascular dysfunction in patients with heart failure with preserved ejection fraction. Am J Physiol Circ Physiol. 2018;314:H1033–42. https://doi.org/10.1152/ajpheart.00680.2017.

Article  CAS  Google Scholar 

Kato S, Saito N, Kirigaya H, Gyotoku D, Iinuma N, Kusakawa Y, et al. Impairment of coronary flow reserve evaluated by phase contrast cine-magnetic resonance imaging in patients with heart failure with preserved ejection fraction. J Am Heart Assoc. 2016;5:e002649. https://doi.org/10.1161/JAHA.115.002649.

Article  Google Scholar 

Mahfouz RA, Gouda M, Abdelhamid M. Relation of microvascular dysfunction and exercise tolerance in patients with heart failure with preserved ejection fraction. Echocardiography. 2020;37:1192–8. https://doi.org/10.1111/echo.14799.

Article  Google Scholar 

Shah SJ, Lam CSP, Svedlund S, Saraste A, Hage C, Tan R-S, et al. Prevalence and correlates of coronary microvascular dysfunction in heart failure with preserved ejection fraction: PROMIS-HFpEF. Eur Heart J. 2018;39:3439–50. https://doi.org/10.1093/eurheartj/ehy531.

Article  CAS  Google Scholar 

Srivaratharajah K, Coutinho T, deKemp R, Liu P, Haddad H, Stadnick E, et al. Reduced myocardial flow in heart failure patients with preserved ejection fraction. Circ Hear Fail. 2016;9:e002562. https://doi.org/10.1161/CIRCHEARTFAILURE.115.002562.

Article  Google Scholar 

Duque ER, Briasoulis A, Alvarez PA. Heart failure with preserved ejection fraction in the elderly: pathophysiology, diagnostic and therapeutic approach. J Geriatr Cardiol. 2019;16:421–8. https://doi.org/10.11909/j.issn.1671-5411.2019.05.009.

Article  Google Scholar 

Simmonds SJ, Cuijpers I, Heymans S, Jones EAV. Cellular and molecular differences between HFpEF and HFrEF: a step ahead in an improved pathological understanding. Cells. 2020;9:242. https://doi.org/10.3390/cells9010242.

Article  CAS  Google Scholar 

Padro T, Manfrini O, Bugiardini R, Canty J, Cenko E, De Luca G, et al. ESC Working Group on Coronary Pathophysiology and Microcirculation position paper on “coronary microvascular dysfunction in cardiovascular disease.” Cardiovasc Res. 2020;116:741–55. https://doi.org/10.1093/cvr/cvaa003.

Article  CAS  Google Scholar 

Kaski JC, Crea F, Gersh BJ, Camici PG. Reappraisal of ischemic heart disease. Circulation. 2018;138:1463–80. https://doi.org/10.1161/CIRCULATIONAHA.118.031373.

Article  Google Scholar 

Camici PG, Crea F. Coronary microvascular dysfunction. N Engl J Med. 2007;356:830–40. https://doi.org/10.1056/NEJMra061889.

Article  CAS  Google Scholar 

Del Buono MG, Montone RA, Camilli M, Carbone S, Narula J, Lavie CJ, et al. Coronary microvascular dysfunction across the spectrum of cardiovascular diseases: JACC state-of-the-art review. J Am Coll Cardiol. 2021;78:1352–71. https://doi.org/10.1016/j.jacc.2021.07.042.

Article  Google Scholar 

Yang JH, Obokata M, Reddy YNV, Redfield MM, Lerman A, Borlaug BA. Endothelium-dependent and independent coronary microvascular dysfunction in patients with heart failure with preserved ejection fraction. Eur J Heart Fail. 2020;22:432–41. https://doi.org/10.1002/ejhf.1671.

Article  CAS  Google Scholar 

Scioli M, Bielli A, Arcuri G, Ferlosio A, Orlandi A. Ageing and microvasculature. Vasc. Cell. 2014;6:19. https://doi.org/10.1186/2045-824X-6-19.

Article  CAS  Google Scholar 

Godo S, Takahashi J, Yasuda S, Shimokawa H. Role of inflammation in coronary epicardial and microvascular dysfunction. Eur Cardiol. 2021;16:e13. https://doi.org/10.15420/ecr.2020.47.

Article  Google Scholar 

Vancheri F, Longo G, Vancheri S, Henein M. Clinical medicine coronary microvascular dysfunction. J Clin Med. 2020;9:2880. https://doi.org/10.3390/jcm9092880.

Article  CAS  Google Scholar 

Cuijpers I, Simmonds SJ, van Bilsen M, Czarnowska E, González Miqueo A, Heymans S, et al. Microvascular and lymphatic dysfunction in HFpEF and its associated comorbidities. Basic Res Cardiol. 2020;115:39. https://doi.org/10.1007/s00395-020-0798-y.

Article  Google Scholar 

Kunadian V, Chieffo A, Camici PG, Berry C, Escaned J, Maas AHEM, et al. An EAPCI expert consensus document on ischaemia with non-obstructive coronary arteries in collaboration with European Society of Cardiology Working Group on Coronary Pathophysiology & Microcirculation Endorsed by Coronary Vasomotor Disorders International. Eur Heart J. 2020;41:3504–20. https://doi.org/10.1093/eurheartj/ehaa503.

Article  CAS  Google Scholar 

Cannon RO, Epstein SE. “Microvascular angina” as a cause of chest pain with angiographically normal coronary arteries. Am J Cardiol. 1988;61:1338–43. https://doi.org/10.1016/0002-9149(88)91180-0.

Article  Google Scholar 

Jespersen L, Hvelplund A, Abildstrøm SZ, Pedersen F, Galatius S, Madsen JK, et al. Stable angina pectoris with no obstructive coronary artery disease is associated with increased risks of major adverse cardiovascular events. Eur Heart J. 2012;33:734–44. https://doi.org/10.1093/eurheartj/ehr331.

Article  Google Scholar 

Pepine CJ, Anderson RD, Sharaf BL, Reis SE, Smith KM, Handberg EM, et al. Coronary microvascular reactivity to adenosine predicts adverse outcome in women evaluated for suspected ischemia results from the National Heart, Lung and Blood Institute WISE (Women’s Ischemia Syndrome Evaluation) study. J Am Coll Cardiol. 2010;55:2825–32. https://doi.org/10.1016/j.jacc.2010.01.054.

Article  CAS  Google Scholar 

Abdu FA, Liu L, Mohammed A-Q, Yin G, Xu B, Zhang W, et al. Prognostic impact of coronary microvascular dysfunction in patients with myocardial infarction with non-obstructive coronary arteries. Eur J Intern Med. 2021;92:79–85. https://doi.org/10.1016/j.ejim.2021.05.027.

Article  Google Scholar 

Cecchi F, Olivotto I, Gistri R, Lorenzoni R, Chiriatti G, Camici PG. Coronary microvascular dysfunction and prognosis in hypertrophic cardiomyopathy. N Engl J Med. 2003;349:1027–35. https://doi.org/10.1056/NEJMoa025050.

Article  CAS  Google Scholar 

Taqueti VR, Solomon SD, Shah AM, Desai AS, Groarke JD, Osborne MT, et al. Coronary microvascular dysfunction and future risk of heart failure with preserved ejection fraction. Eur Heart J. 2018;39:840–9. https://doi.org/10.1093/eurheartj/ehx721.

Article  CAS  Google Scholar 

Ong P, Safdar B, Seitz A, Hubert A, Beltrame JF, Prescott E. Diagnosis of coronary microvascular dysfunction in the clinic. Cardiovasc Res. 2020;116:841–55. https://doi.org/10.1093/cvr/cvz339.

Article  CAS  Google Scholar 

Konijnenberg LSF, Damman P, Duncker DJ, Kloner RA, Nijveldt R, van Geuns R-JM, et al. Pathophysiology and diagnosis of coronary microvascular dysfunction in ST-elevation myocardial infarction. Cardiovasc Res. 2020;116:787–805. https://doi.org/10.1093/cvr/cvz301.

Article  CAS  Google Scholar 

Ungvari Z, Kaley G, de Cabo R, Sonntag WE, Csiszar A. Mechanisms of vascular aging: new perspectives. J Gerontol Ser A Biol Sci Med Sci. 2010;65A:1028–41. https://doi.org/10.1093/gerona/glq113.

Article  Google Scholar 

Hotta K, Chen B, Behnke BJ, Ghosh P, Stabley JN, Bramy JA, et al. Exercise training reverses age-induced diastolic dysfunction and restores coronary microvascular function. J Physiol. 2017;595:3703–19. https://doi.org/10.1113/JP274172.

Article  CAS  Google Scholar 

Ytrehus K, Hulot J-S, Perrino C, Schiattarella GG, Madonna R. Perivascular fibrosis and the microvasculature of the heart. Still hidden secrets of pathophysiology? Vascul Pharmacol. 2018;107:78–83. https://doi.org/10.1016/j.vph.2018.04.007.

Article  CAS  Google Scholar 

van de Hoef TP, Echavarria-Pinto M, Meuwissen M, Stegehuis VE, Escaned J, Piek JJ. Contribution of age-related microvascular dysfunction to abnormal coronary: hemodynamics in patients with ischemic heart disease. JACC Cardiovasc Interv. 2020;13:20–9. https://doi.org/10.1016/j.jcin.2019.08.052.

Article  Google Scholar 

Steenman M, Lande G. Cardiac aging and heart disease in humans. Biophys Rev. 2017;9:131–7. https://doi.org/10.1007/s12551-017-0255-9.

Article  Google Scholar 

Rodgers JL, Jones J, Bolleddu SI, Vanthenapalli S, Rodgers LE, Shah K, et al. Cardiovascular risks associated with gender and aging. J Cardiovasc Dev Dis. 2019;6:19. https://doi.org/10.3390/jcdd6020019.

Article  CAS  Google Scholar 

Chiao YA, Rabinovitch PS. The aging heart. Cold Spring Harb Perspect Med. 2015;5:a025148. https://doi.org/10.1101/cshperspect.a025148.

Article  CAS  Google Scholar 

Triposkiadis F, Xanthopoulos A, Butler J. Cardiovascular aging and heart failure. J Am Coll Cardiol. 2019;74:804–13. https://doi.org/10.1016/j.jacc.2019.06.053.

Article  Google Scholar 

Mende U, Semsarian C, Martins DC, Kagen A, Duffy C, Schoen FJ, et al. Dilated cardiomyopathy in two transgenic mouse lines expressing activated G protein alpha(q): lack of correlation between phospholipase C activation and the phenotype. J Mol Cell Cardiol. 2001;33:1477–91. https://doi.org/10.1006/jmcc.2001.1411.

Article  CAS  Google Scholar 

Tyrankiewicz U, Kwiatkowski G, Chlopicki S. Preservation of left ventricle peak and mean pulse flow blood velocity despite progressive deterioration of cardiac function in a chronic heart failure murine model. J Physiol Pharmacol. 2021;72:595–603. https://doi.org/10.26402/jpp.2021.4.11.

Article  Google Scholar 

Tyrankiewicz U, Olkowicz M, Skórka T, Jablonska M, Orzylowska A, Bar A, et al. Activation pattern of ACE2/Ang-(1–7) and ACE/Ang II pathway in course of heart failure assessed by multiparametric MRI in vivo in Tgαq*44 mice. J Appl Physiol. 2018;124:52–65. https://doi.org/10.1152/japplphysiol.00571.2017.

Article  CAS  Google Scholar 

Ye S, Zhou X, Chen P, Lin J-F. Folic acid attenuates remodeling and dysfunction in the aging heart through the ER stress pathway. Life Sci. 2021;264:118718. https://doi.org/10.1016/j.lfs.2020.118718.

留言 (0)

沒有登入
gif