Knowledge-integrated machine learning for materials: lessons from gameplaying and robotics

Olivetti, E. A. et al. Data-driven materials research enabled by natural language processing and information extraction. Appl. Phys. Rev. 7, 041317 (2020).

Article  CAS  Google Scholar 

Friederich, P., Krenn, M., Tamblyn, I. & Aspuru-Guzik, A. Scientific intuition inspired by machine learning generated hypotheses. Mach. Learn. Sci. Technol. 2, 025027 (2020).

Article  Google Scholar 

Bash, D. et al. Accelerated automated screening of viscous graphene suspensions with various surfactants for optimal electrical conductivity. Digit. Discov. 1, 139–146 (2022).

Article  Google Scholar 

Choubisa, H. et al. Crystal site feature embedding enables exploration of large chemical spaces. Matter 3, 433–448 (2020).

Article  Google Scholar 

Mrdjenovich, D. et al. propnet: a knowledge graph for materials science. Matter 2, 464–480 (2020).

Article  Google Scholar 

Chen, C., Zuo, Y., Ye, W., Li, X. & Ong, S. P. Learning properties of ordered and disordered materials from multi-fidelity data. Nat. Comput. Sci. 1, 46–53 (2021).

Article  Google Scholar 

Ren, Z. et al. An invertible crystallographic representation for general inverse design of inorganic crystals with targeted properties. Matter 5, 314–335 (2020).

Article  Google Scholar 

Allahyari, Z. & Oganov, A. R. Coevolutionary search for optimal materials in the space of all possible compounds. npj Comput. Mater. 6, 55 (2020).

Article  Google Scholar 

Nouira, A., Sokolovska, N. & Crivello, J. C. CrystalGAN: learning to discover crystallographic structures with generative adversarial networks. Preprint at https://doi.org/10.48550/arXiv.1810.11203 (2018).

Kim, S., Noh, J., Gu, G. H., Aspuru-Guzik, A. & Jung, Y. Generative adversarial networks for crystal structure prediction. ACS Cent. Sci. 6, 1412–1420 (2020).

Article  CAS  Google Scholar 

Hoffmann, J. et al. Data-driven approach to encoding and decoding 3-D crystal structures. Preprint at https://doi.org/10.48550/arXiv.1909.00949 (2019).

Zhang, L., Lin, D. Y., Wang, H., Car, R. & E, W. Active learning of uniformly accurate interatomic potentials for materials simulation. Phys. Rev. Mater. 3, 023804 (2019).

Article  CAS  Google Scholar 

Zhang, L., Han, J., Wang, H., Car, R. & E, W. Deep potential molecular dynamics: a scalable model with the accuracy of quantum mechanics. Phys. Rev. Lett. 120, 143001 (2018).

Article  CAS  Google Scholar 

Tabor, D. P. et al. Accelerating the discovery of materials for clean energy in the era of smart automation. Nat. Rev. Mater. 3, 5–20 (2018).

Article  CAS  Google Scholar 

Chang, J. et al. Efficient closed-loop maximization of carbon nanotube growth rate using Bayesian optimization. Sci. Rep. 10, 9040 (2020).

Article  CAS  Google Scholar 

Nikolaev, P. et al. Autonomy in materials research: a case study in carbon nanotube growth. npj Comput. Mater. 2, 16031 (2016).

Article  Google Scholar 

Gongora, A. E. et al. A Bayesian experimental autonomous researcher for mechanical design. Sci. Adv. 6, eaaz1708 (2020).

Article  Google Scholar 

Masubuchi, S. et al. Autonomous robotic searching and assembly of two-dimensional crystals to build van der Waals superlattices. Nat. Commun. 9, 4–6 (2018).

Article  Google Scholar 

Burger, B. et al. A mobile robotic chemist. Nature 583, 237–241 (2020).

Article  CAS  Google Scholar 

Ren, F. et al. Accelerated discovery of metallic glasses through iteration of machine learning and high-throughput experiments. Sci. Adv. 4, eaaq1566 (2018).

Article  Google Scholar 

Yu, H., Tian, X., Weinan, E. & Li, Q. OnsagerNet: learning stable and interpretable dynamics using a generalized Onsager principle. Phys. Rev. Fluids 6, 114402 (2021).

Article  Google Scholar 

Raissi, M., Yazdani, A. & Karniadakis, G. E. Hidden fluid mechanics: learning velocity and pressure fields from flow visualizations. Science 367, 1026–1030 (2020).

Article  CAS  Google Scholar 

Lu, L. et al. Extraction of mechanical properties of materials through deep learning from instrumented indentation. Proc. Natl Acad. Sci. USA 117, 7052–7062 (2020).

Article  CAS  Google Scholar 

Raissi, M., Perdikaris, P. & Karniadakis, G. E. Physics-informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. J. Comput. Phys. 378, 686–707 (2019).

Article  Google Scholar 

Yan, Y. et al. Diagnosing coronal magnetic fields with radio imaging-spectroscopy technique. Proc. Int. Astron. Union https://doi.org/10.1017/S1743921320000629 (2020).

Article  Google Scholar 

Raissi, M., Perdikaris, P. & Karniadakis, G. E. Machine learning of linear differential equations using Gaussian processes. J. Comput. Phys. 348, 683–693 (2017).

Article  Google Scholar 

Atkinson, S. et al. Data-driven discovery of free-form governing differential equations. Preprint at https://doi.org/10.48550/arXiv.1910.05117 (2019).

Champion, K., Lusch, B., Nathan Kutz, J. & Brunton, S. L. Data-driven discovery of coordinates and governing equations. Proc. Natl Acad. Sci. USA 116, 22445–22451 (2019).

Article  CAS  Google Scholar 

Iten, R., Metger, T., Wilming, H., Del Rio, L. & Renner, R. Discovering physical concepts with neural networks. Phys. Rev. Lett. 124, 10508 (2020).

Article  CAS  Google Scholar 

Butler, K. T., Davies, D. W., Cartwright, H., Isayev, O. & Walsh, A. Machine learning for molecular and materials science. Nature 559, 547–555 (2018).

Article  CAS  Google Scholar 

Correa-Baena, J. P. et al. Accelerating materials development via automation, machine learning, and high-performance computing. Joule 2, 1410–1420 (2018).

Article  CAS  Google Scholar 

Mnih, V. et al. Human-level control through deep reinforcement learning. Nature 518, 529–533 (2015).

Article  CAS  Google Scholar 

Montavon, G. et al. Machine learning of molecular electronic properties in chemical compound space. N. J. Phys. 15, 095003 (2013).

Article  CAS  Google Scholar 

Bartók, A. P., Payne, M. C., Kondor, R. & Csányi, G. Gaussian approximation potentials: the accuracy of quantum mechanics, without the electrons. Phys. Rev. Lett. 104, 46 (2010).

Article  Google Scholar 

Pun, G. P. P., Batra, R., Ramprasad, R. & Mishin, Y. Physically informed artificial neural networks for atomistic modeling of materials. Nat. Commun. 10, 2339 (2019).

Article  Google Scholar 

Dolgirev, P. E., Kruglov, I. A. & Oganov, A. R. Machine learning scheme for fast extraction of chemically interpretable interatomic potentials. AIP Adv. 6, 085318 (2016).

Article  Google Scholar 

Behler, J. Perspective: Machine learning potentials for atomistic simulations. J. Chem. Phys. 145, 170901 (2016).

Article  Google Scholar 

Behler, J. & Parrinello, M. Generalized neural-network representation of high-dimensional potential-energy surfaces. Phys. Rev. Lett. 98, 146401 (2007).

Article  Google Scholar 

Novikov, I. S., Gubaev, K., Podryabinkin, E. V. & Shapeev, A. V. The MLIP package: moment tensor potentials with MPI and active learning. Mach. Learn. Sci. Technol. 2, 025002 (2021).

Article  Google Scholar 

Brandt, R. E. et al. Rapid photovoltaic device characterization through Bayesian parameter estimation. Joule 1, 843–856 (2017).

Article  Google Scholar 

MacLeod, B. P. et al. Self-driving laboratory for accelerated discovery of thin-film materials. Sci. Adv. 6, eaaz8867 (2020).

Article  CAS  Google Scholar 

Irwin, B. W. J., Levell, J. R., Whitehead, T. M., Segall, M. D. & Conduit, G. J. Practical applications of deep learning to impute heterogeneous drug discovery data. J. Chem. Inf. Model. 60, 2848–2857 (2020).

Article  CAS  Google Scholar 

Irwin, B. W. J., Mahmoud, S., Whitehead, T. M., Conduit, G. J. & Segall, M. D. Imputation versus prediction: applications in machine learning for drug discovery. Futur. Drug Discov. 2, FDD38 (2020).

Article  Google Scholar 

Jia, X. et al. Anthropogenic biases in chemical reaction data hinder exploratory inorganic synthesis. Nature 573, 251–255 (2019).

Article  CAS  Google Scholar 

Oviedo, F. et al. Fast and interpretable classification of small X-ray diffraction datasets using data augmentation and deep neural networks. npj Comput. Mater. 5, 60 (2019).

Article  Google Scholar 

Crossland, E. J. W. et al. Mesoporous TiO2 single crystals delivering enhanced mobility and optoelectronic device performance. Nature 495, 215–219 (2013).

Article  CAS  Google Scholar 

Zagorac, D., Muller, H., Ruehl, S., Zagorac, J. & Rehme, S. Recent developments in the Inorganic Crystal Structure Database: theoretical crystal structure data and related features. J. Appl. Crystallogr. 52, 918–925 (2019).

Article  CAS  Google Scholar 

Ye, W. et al. Harnessing the Materials Project for machine-learning and accelerated discovery. MRS Bull. 43, 664–669 (2018).

Article  Google Scholar 

Curtarolo, S. et al. AFLOW: an automatic framework for high-throughput materials discovery. Comput. Mater. Sci. 58, 218–226 (2012).

Article  CAS  Google Scholar 

Kirklin, S. et al. The open quantum materials database (OQMD): assessing the accuracy of DFT formation energies. npj Comput. Mater. 1, 15010 (2015).

Article  CAS  Google Scholar 

Zitnick, C. L. et al. An introduction to electrocatalyst design using machine learning for renewable energy storage. Preprint at https://doi.org/10.48550/arXiv.2010.09435 (2020).

Ulissi, Z. The Open Catalyst 2020 (OC20) dataset and community challenges. ACS Catal. 11, 6059–6072 (2021).

Article  Google Scholar 

留言 (0)

沒有登入
gif