Utilization of geometry inspired array absorbers for electromagnetic device testing

Bilotti, F., Nucci, L., Vegni, L.: An SRR based microwave absorber. Microwave Opt. Technol. Letter. 48, 2171 (2006)

Article  Google Scholar 

Petrov, V., Gagulin, V.: Microwave absorbing materials. Inorg. Mater. 37, 93 (2001)

Article  CAS  Google Scholar 

Cui, T.J., Qi, M.Q., Wan, X., Zhao, J., Cheng, Q.: Coding metamaterials, digital metamaterials and programmable metamaterials. Light Sci Appl. 3, 218 (2014)

Article  Google Scholar 

Qin, F., Brosseau, C.: A review and analysis of microwave absorption in polymer composites filed with carbonaceous particles. J Appl Phys 111, 061301 (2012)

Article  Google Scholar 

Saville, P.: Review of radar absorbing materials. Technical Memorandum Sponsored by Defence R&D Canada, Atlantic (2005)

Rani, S., Marwaha, A., Marwaha, S., Bindra, S., Murthy Chavali, P., Reddy, N.: Characterization and measurement of nanostructured copper based electromagnetic wave absorber. J Electromagn, Taylor and Francis 41, 313 (2020)

Google Scholar 

Kundu, D., Mohan, A., Chakrabarty, A.: Single-layer wideband microwave absorber using array of crossed dipoles. IEEE Antennas Wirel Propag Lett 15, 1589 (2016)

Article  Google Scholar 

Hardiati, S., Setiawan, A., Santiko, A.B., Mahmudin, D., Wijayanto, Y.: Performance of microwave absorbers with fabric form in S-band operational frequency. IEEE Int Conf Radar, Antenna, Microw, Electron Telecommuni 16, 67 (2016)

Google Scholar 

Al-Zoubi, O.H., Naseem, H.: Enhancing the performance of the microwave absorbing materials by using dielectric resonator arrays. Modell Simul Eng 17, 23 (2017)

Google Scholar 

Balanis, C.A.: Advanced engineering electromagnetics, 2nd edn., pp. 1–1046. John Wiley & Sons Inc (2010)

Google Scholar 

Bhobe, A.U., Holloway, C.L., Melinda, P.M.: Meander delay line challenge problem: a comparison using FDTD, FEM and MOM. IEEE Int Symp Electromagn Compat, Montr, Que. 23, 805 (2001)

Google Scholar 

Sharma, R.S.: Analysis of electromagnetic field using FEM: a review. Int J Adv Electr Eng 1, 1 (2010)

Google Scholar 

Cheng, Y., He, B., Zhao, J., Gong, R.: Ultra-thin low-frequency broadband microwave absorber based on magnetic medium and metamaterial. J Electron Mater 46, 1293 (2017)

Article  CAS  Google Scholar 

Silva, E.F., Costa, C.H., Vasconcelos, M.S.: Transmission spectra in graphene-based octonacci one-dimensional photonic quasicrystals. Opt Mater. Elsevier 89, 623 (2018)

Article  Google Scholar 

Ponraj, J.S., Zai Quan, X., Dhanabalan, S.C., Haoran, M.: Photonics and optoelectronics of two-dimensional materials beyond graphene. Nanotechnology 27, 1 (2016)

Article  Google Scholar 

Yang, W., Yang, W., Di, S.S., Gang, Q., Xiujuan: Exploring effective approach to synthesize graphene@sulfur composites for high performance lithium-sulfur batteries. Curr Nanosci 14, 335 (2018)

Article  CAS  Google Scholar 

Sun, H., Zhang, Y., Yue, Wu., Li, C., Wei, G., Wang, J., Liu, L.: Broadband and high-efficiency microwave absorbers based on pyramid structure. ACS Appl. Mater. Interfaces 14, 52182 (2022)

Article  CAS  Google Scholar 

Zheng, H.Q., Huang, Y.T., Tong, M.S.: A novel design of microwave absorbers based on multilayered composite materials for reduction of radar cross section. Appl Comput Electromagn Soc J (ACES) 37, 326 (2022)

Google Scholar 

留言 (0)

沒有登入
gif