Graph theoretical brain connectivity measures to investigate neural correlates of music rhythms associated with fear and anger

Aftanas LI et al (2006) Neurophysiological correlates of induced discrete emotions in humans: an individually oriented analysis. Neurosci Behav Physiol. https://doi.org/10.1007/s11055-005-0170-6

Article  Google Scholar 

Altenmüller E, Schürmann K et al (2002) Hits to the left, flops to the right different emotions during listening to music are reflected in cortical lateralisation patterns. Neuropsychologia 40:2242–2256

Article  Google Scholar 

American psychological association (2001) publication manual of the American, psychological association, 5th edn. APA, Washington

Arjmand HA et al (2017) Emotional responses to music: shifts in frontal brain asymmetry mark periods of musical change. Front Psychol 8:2044. https://doi.org/10.3389/fpsyg.2017.02044

Article  Google Scholar 

Aydın S (2010) Determination of autoregressive model orders for seizure detection. T J Elect Eng Comp 18(1):23–30

Google Scholar 

Aydın S et al (2018) Cortical correlations in wavelet domain for estimation of emotional dysfunctions. Neur Comput Appl 30:1085–1094

Article  Google Scholar 

Aydın S (2022) Investigation of global brain dynamics depending on emotion regulation strategies indicated by graph theoretical brain network measures at system level. Cogn Neurodyn. https://doi.org/10.1007/s11571-022-09843-w

Article  Google Scholar 

Baccala LA et al (2001) Partial directed coherence: a new conception in neural structure determination. Biol Cybern 84:463–474

Article  CAS  Google Scholar 

Barrett LF et al (2007) The experience of emotion. Ann Rev Psychol 58:373–403

Article  Google Scholar 

Barrett LF (2011) Was Darwin wrong about emotional expressions? Curr Dir Psychol Sci. https://doi.org/10.1177/0963721411429125

Article  Google Scholar 

Barrett LF (2012) Emotions are real. Emotion. https://doi.org/10.1037/a0027555

Article  Google Scholar 

Batbaatar E et al (2019) Semantic-emotion neural network for emotion recognition from text. IEEE Access 45:7111866–111878

Google Scholar 

Bekkedal MY et al (2011) Human brain EEG indices of emotions: delineating responses to affective vocalizations by measuring frontal theta event-related synchronization. Neurol Biob Rev 35(9):1959–1970

Article  Google Scholar 

Bianchi AM et al (2013) Frequency-based approach to the study of semantic brain networks connectivity. J Neurosci Math 212(2):181–189

Article  CAS  Google Scholar 

Bigand E et al (2005) Multidimensional scaling of emotional responses to music: the effect of musical expertise and of the duration of the excerpts. Cognit Emot 19:1113–1139

Article  Google Scholar 

Blinowska KJ, et al. (2006) Multivariate signal analysis by parametric models: Handbook of Time Series Analysis

Blinowska KJ et al (2013) Application of directed transfer function and network formalism for the assessment of functional connectivity in working memory task. Phys Eng Sci. https://doi.org/10.1098/rsta.2011.0614

Article  Google Scholar 

Blood AJ et al (1999) Emotional responses to pleasant and unpleasant music correlate with activity in paralimbic brain regions. Nat Neurosci 2:382–387

Article  CAS  Google Scholar 

Bo H et al (2019) Music-evoked emotion recognition based on cognitive principles inspired EEG temporal and spectral features. Int J Mach Learn Cybernet 10:2439–2448

Article  CAS  Google Scholar 

Bordier C, Nicolini C, Bifone A (2017) Graph analysis and modularity of brain functional connectivity networks: searching for the optimal threshold. Front Neurosci 11:441. https://doi.org/10.3389/fnins.2017.00441

Article  Google Scholar 

Boucher O et al (2014) Spatiotemporal dynamics of affective picture processing revealed by intracranial high-gamma modulations. Hum Brain Mapp 36:16–28

Article  Google Scholar 

Bröhl F, Kayser C (2021) Delta/theta band EEG differentially tracks low and high frequency speech-derived envelopes. Neuroimage 233:117958

Article  Google Scholar 

Bueno JLO, Ramos D (2007) Musical mode and estimation of time. Percept Mot Skills 105:1087–1092

Article  Google Scholar 

Bullmore E et al (2009) Complex brain networks: graph theoretical analysis of structural and functional systems. Rev Neuro, Nat. https://doi.org/10.1038/nrn2575

Article  Google Scholar 

Chang C., et al.(2010). Time-frequency dynamics of resting-state brain connectivity measured with fMRI. Neuroimage, https://doi.org/10.1016/j.neuroimage.2009.12.011

Cheng J et al (2021) Emotion recognition from multi-channel EEG via deep forest. IEEE JBHI. https://doi.org/10.1109/JBHI.2020.2995767

Article  Google Scholar 

Chen D, Miao R et al (2021) Sparse granger causality analysis model based on sensors correlation for emotion recognition classification in Electroencephalography. Front Comp Neurosci 15:874

Google Scholar 

Cohen JR et al (2016) The segregation and integration of distinct brain networks and their relationship to cognition. J Neurosci 36:12083–12094

Article  CAS  Google Scholar 

Daly I et al (2014) Neural correlates of emotional responses to music: an EEG study. Neurosci Lett 573:52–7

Article  CAS  Google Scholar 

Daly I et al (2015) Music-induced emotions can be predicted from a combination of brain activity and acoustic features. Brain Cognit. https://doi.org/10.1016/j.bandc.2015.08.003

Article  Google Scholar 

Daly I et al (2020) Neural and physiological data from participants listening to affective music. Sci Data 7:177. https://doi.org/10.1038/s41597-020-0507-6

Article  Google Scholar 

Dennis TA, Solomon B (2010) Frontal EEG and emotion regulation: electrocortical activity in response to emotional film clips is associated with reduced mood induction and attention interference effects. Biol Psychol 85:456–464

Article  Google Scholar 

Droit-Volet S et al (2010) Time flies with music whatever its modality. Acta Psychol 135:226–236

Article  Google Scholar 

Eerola T et al (2010) A comparison of the discrete and dimensional models of emotion in music. Psych Music 39(1):18–49

Article  Google Scholar 

Ekman P et al (2011) What is meant by calling emotions basic. Emot Rev. https://doi.org/10.1177/1754073911410740

Article  Google Scholar 

Fallani FDV et al (2017) A topological criterion for filtering information in complex brain networks. Plos Comp Biol 13(1):e1005305

Article  Google Scholar 

Ferdek MA et al (2016) Depressive rumination and the emotional control circuit. Cogn, Aff Behav Neurosci 16(6):1099–1113

Article  Google Scholar 

Finc K et al (2020) Dynamic reconfiguration of functional brain networks during working memory training. Nat Commun 11:2435

Article  CAS  Google Scholar 

Flores-Gutierrez EO et al (2007a) Metabolic and electric brain patterns during pleasant and unpleasant emotions induced by music masterpieces. Int J Psychophysiol 65:69–84

Article  Google Scholar 

Flores-Gutirréez E, Díaz JL et al (2007) Metabolic and electric brain patterns during pleasant and unpleasant emotions induced by music masterpieces. Int J Psychophysiol 65:69–84. https://doi.org/10.1016/j.ijpsycho.2007.03.004.71

Article  Google Scholar 

Fong AHC et al (2019) Dynamic functional connectivity during task performance and rest predicts individual differences in attention across studies. Neuroimage 188:14–25

Article  Google Scholar 

Fontaine JR et al (2007) The world of emotions is not two-dimensional. Psychol Sci 18(12):1050–1057

Article  Google Scholar 

Franaszczuk PJ, Bergey GJ et al (1994) Analysis of mesial temporal seizure onset and propagation using the directed transfer function method. Electroencephalogr Clin Neurophysiol 91:413–427. https://doi.org/10.1016/0013-4694(94)90163-5

Article  CAS  Google Scholar 

Fransson P et al (2018) Brain network segregation and integration during an epoch-related working memory fmri experiment. Neuroimage 178:147–161

Article  Google Scholar 

Gaxiola JA et al (2018) Using the partial directed coherence to assess functional connectivity in electroencephalography data for brain-computer interfaces. IEEE Trans Cognit Dev Sys 10(3):776–783

Article  Google Scholar 

Grefkes C et al (2011) Reorganization of cerebral networks after stroke: new insights from neuroimaging with connectivity approaches. Brain. https://doi.org/10.1093/brain/awr033

Article  Google Scholar 

Haider B et al (2006) Neocortical network activity in vivo is generated through a dynamic balance of excitation and inhibition. J Neurosci 26:4535–4545

Article  CAS  Google Scholar 

Hamann S (2012) Mapping discrete and dimensional emotions onto the brain: controversies and consensus. Trends Cognit Sci. https://doi.org/10.1016/j.tics.2012.07.006

Article  Google Scholar 

Hansen PC (2007) Regularization Tools Version 4.0 for Matlab 7.3. Num Algor 46:189–194

Article  Google Scholar 

He B et al (2011) eConnectome: a MATLAB toolbox for mapping and imaging of brain functional connectivity. J Neurosci Meth 195(2):261–269

Article  Google Scholar 

Henry N, Kayser D, Egermann H (2021) Music in mood regulation and coping orientations in response to covid-19 lockdown measures within the united kingdom. Front Psychol 12:647879. https://doi.org/10.3389/fpsyg.2021.647879

Article  Google Scholar 

Hereld DC (2019) Music as a regulator of emotion: three case studies. Music Med https://doi.org/10.47513/MMD.V11I3.644

Hilsdorf M, Bullerjahn C (2021) Modulation of negative affect predicts acceptance of music streaming services while personality does not. Front Psychol 12:659062. https://doi.org/10.3389/fpsyg.2021.659062

Article  Google Scholar 

Hu X et al (2017) EEG correlates of ten positive emotions. Front Hum Neurosci. https://doi.org/10.3389/fnhum.2017.00026

Article  Google Scholar 

Huang D et al (2016) Combining partial directed coherence and graph theory to analyse effective brain networks of different mental tasks. In Hum. Neurosci, Front. https://doi.org/10.3389/fnhum.2016.00235

Jackson DC et al (2003) Now you feel it now you don’t: frontal brain electrical asymmetry and individual differences in emotion regulation. Psychol Sci 14:612–617

Article  Google Scholar 

Jiang P et al (2019) Parallelized convolutional recurrent neural network with spectral features for speech emotion recognition. IEEE Access 7:90368–90377

Article  Google Scholar 

留言 (0)

沒有登入
gif