Implementing a suspect screening method to assess occupational chemical exposures among US-based hairdressers serving an ethnically diverse clientele: a pilot study

Helm JS, Nishioka M, Brody JG, Rudel RA, Dodson RE. Measurement of endocrine disrupting and asthma-associated chemicals in hair products used by Black women. Environ Res. 2018;165:448–58.

Article  CAS  Google Scholar 

James-Todd T, Senie R, Terry MB. Racial/ethnic differences in hormonally-active hair product use: A plausible risk factor for health disparities. J Immigr Minor Health. 2012;14:506–11.

Article  Google Scholar 

Wise LA, Palmer JR, Reich D, Cozier YC, Rosenberg L. Hair relaxer use and risk of uterine leiomyomata in African-American women. Am J Epidemiol. 2012;175:432–40.

Article  Google Scholar 

Stiel L, Adkins-Jackson PB, Clark P, Mitchell E, Montgomery S. A review of hair product use on breast cancer risk in African American women. Cancer Med. 2016;5:597–604.

Article  Google Scholar 

U.S. Bureau of Labor Statistics. BLS Data Finder. https://beta.bls.gov/dataQuery/find?st=0&r=20&q=hairdressers&more=0&fq=survey. Accessed 25 Aug 2022.

Quiros-Alcala L, Pollack AZ, Tchangalova N, DeSantiago M, Kavi LKA. Occupational exposures among hair and nail salon workers: a scoping review. Curr Environ Health Rep. 2019;6:269–85.

Article  CAS  Google Scholar 

de Gennaro G, de Gennaro L, Mazzone A, Porcelli F, Tutino M. Indoor air quality in hair salons: Screening of volatile organic compounds and indicators based on health risk assessment. Atmos Environ. 2014;83:119–26.

Article  Google Scholar 

Louis LM, Kavi LK, Boyle M, Pool W, Bhandari D, De Jesús VR, et al. Biomonitoring of volatile organic compounds (VOCs) among hairdressers in salons primarily serving women of color: a pilot study. Environ Int. 2021;154:106655–70.

Article  CAS  Google Scholar 

Kaikiti C, Stylianou M, Agapiou A. TD-GC/MS analysis of indoor air pollutants (VOCs, PM) in hair salons. Chemosphere 2022;294:133691–701.

Article  CAS  Google Scholar 

Wang LH, Tsai SJ. Simultaneous determination of oxidative hair dye p-phenylenediamine and its metabolites in human and rabbit biological fluids. Anal Biochem. 2003;312:201–7.

Article  CAS  Google Scholar 

Hueber-Becker F, Nohynek GJ, Dufour EK, Meuling WJA, de Bie ATHHJ, Toutain H, et al. Occupational exposure of hairdressers to [14C]-para-phenylenediamine-containing oxidative hair dyes: a mass balance study. Food Chem Toxicol. 2007;45:160–9.

Article  CAS  Google Scholar 

Schettgen T, Heinrich K, Kraus T, Gube M. Determination of 2,5-toluylenediamine (2,5-TDA) and aromatic amines in urine after personal application of hair dyes: kinetics and doses. Arch Toxicol. 2011;85:127–33.

Article  CAS  Google Scholar 

Gube M, Heinrich K, Dewes P, Brand P, Kraus T, Schettgen T. Internal exposure of hairdressers to permanent hair dyes: a biomonitoring study using urinary aromatic diamines as biomarkers of exposure. Int Arch Occup Environ Health. 2011;84:287–92.

Article  CAS  Google Scholar 

Hooff GP, Huizen NA, van, Meesters RJW, Zijlstra EE, Abdelraheem M, Abdelraheem W, et al. Analytical investigations of toxic p-phenylenediamine (PPD) levels in clinical urine samples with special focus on MALDI-MS/MS. PLoS ONE. 2011;6:e22191–e22198.

Article  CAS  Google Scholar 

Kolena B, Petrovičová I, Šidlovská M, Pilka T, Neuschlová M, Valentová I, et al. Occupational phthalate exposure and health outcomes among hairdressing apprentices. Hum Exp Toxicol. 2017;36:1100–12.

Article  CAS  Google Scholar 

Kolena B, Petrovicova I, Sidlovska M, Hlisnikova H, Tomasovova E, Zoldakova V, et al. Phthalates exposure and occupational symptoms among Slovakian hairdressing apprentices. Appl Sci. 2019;9:3321–35.

Article  CAS  Google Scholar 

Arfaeinia H, Ramavandi B, Yousefzadeh S, Dobaradaran S, Ziaei M, Rashidi N, et al. Urinary level of un-metabolized parabens in women working in beauty salons. Environ Res. 2021;200:111771–9.

Article  CAS  Google Scholar 

Andra SS, Austin C, Patel D, Dolios G, Awawda M, Arora M. Trends in the application of high-resolution mass spectrometry for human biomonitoring: an analytical primer to studying the environmental chemical space of the human exposome. Environ Int. 2017;100:32–61.

Article  CAS  Google Scholar 

Pourchet M, Debrauwer L, Klanova J, Price EJ, Covaci A, Caballero-Casero N, et al. Suspect and non-targeted screening of chemicals of emerging concern for human biomonitoring, environmental health studies and support to risk assessment - From promises to challenges and harmonisation issues. Environ Int. 2020;139:105545–57.

Article  CAS  Google Scholar 

Guo Z, Huang S, Wang J, Feng YL. Recent advances in non-targeted screening analysis using liquid chromatography - high resolution mass spectrometry to explore new biomarkers for human exposure. Talanta 2020;219:121339–54.

Article  CAS  Google Scholar 

Boyle MD, Kavi LK, Louis LM, Pool W, Sapkota A, Zhu L, et al. Occupational exposures to phthalates among Black and Latina U.S. hairdressers serving an ethnically diverse clientele: a pilot study. Environ Sci Technol. 2021;55:8128–38.

Article  CAS  Google Scholar 

Dunn WB, Wilson ID, Nicholls AW, Broadhurst D. The importance of experimental design and QC samples in large-scale and MS-driven untargeted metabolomic studies of humans. Bioanalysis. 2012;4:2249–64.

Article  CAS  Google Scholar 

Broadhurst D, Goodacre R, Reinke SN, Kuligowski J, Wilson ID, Lewis MR, et al. Guidelines and considerations for the use of system suitability and quality control samples in mass spectrometry assays applied in untargeted clinical metabolomic studies. Metabolomics. 2018;14:72.

Article  Google Scholar 

Caballero-Casero N, Belova L, Vervliet P, Antignac JP, Castaño A, Debrauwer L, et al. Towards harmonized criteria in quality assurance and quality control of suspect and non-target LC-HRMS analytical workflows for screening of emerging contaminants in human biomonitoring. Trend Anal Chem. 2021;136:116201–14.

Frigerio G, Moruzzi C, Mercadante R, Schymanski EL, Fustinoni S. Development and application of an LC-MS/MS untargeted exposomics method with a separated pooled quality control strategy. Molecules. 2022;27:2580–94.

Article  CAS  Google Scholar 

Williams AJ, Grulke CM, Edwards J, McEachran AD, Mansouri K, Baker NC, et al. The CompTox Chemistry Dashboard: A community data resource for environmental chemistry. J Cheminform. 2017;9:61–87.

Article  Google Scholar 

Lowe CN, Williams AJ. Enabling high-throughput searches for multiple chemical data using the U.S.-EPA CompTox Chemicals Dashboard. J Chem Inf Model. 2021;61:565–70.

Article  CAS  Google Scholar 

McEachran AD, Mansouri K, Grulke C, Schymanski EL, Ruttkies C, Williams AJ. “MS-Ready” structures for non-targeted high-resolution mass spectrometry screening studies. J Cheminform. 2018;10:45–60.

Article  Google Scholar 

Knolhoff AM, Premo JH, Fisher CM. A proposed quality control standard mixture and its uses for evaluating nontargeted and suspect screening LC/HR-MS method performance. Anal Chem. 2021;93:1596–603.

Article  CAS  Google Scholar 

Sobus JR, Grossman JN, Chao A, Singh R, Williams AJ, Grulke CM, et al. Using prepared mixtures of ToxCast chemicals to evaluate non-targeted analysis (NTA) method performance. Anal Bioanal Chem. 2019;411:835–51.

Article  CAS  Google Scholar 

Schymanski EL, Jeon J, Gulde R, Fenner K, Ruff M, Singer HP, et al. Identifying small molecules via high resolution mass spectrometry: Communicating confidence. Environ Sci Technol. 2014;48:2097–8.

Article  CAS  Google Scholar 

Ruttkies C, Schymanski EL, Wolf S, Hollender J, Neumann S. MetFrag relaunched: incorporating strategies beyond in silico fragmentation. J Cheminform. 2016;8:3–18.

Article  Google Scholar 

Schymanski EL, Kondić T, Neumann S, Thiessen PA, Zhang J, Bolton EE. Empowering large chemical knowledge bases for exposomics: PubChemLite meets MetFrag. J Cheminform. 2021;13:19–33.

Article  CAS  Google Scholar 

Dionisio KL, Phillips K, Price PS, Grulke CM, Williams A, Biryol D, et al. The Chemical and Products Database, a resource for exposure-relevant data on chemicals in consumer products. Sci Data. 2018;5:180125–33.

Article  CAS  Google Scholar 

Williams A. The Chemical and Products Database (CPDat) MySQL Data File. 2017. https://doi.org/10.23645/epacomptox.5352997.

Isaacs KK, Dionisio K, Phillips K, Bevington C, Egeghy P, Price PS. Establishing a system of consumer product use categories to support rapid modeling of human exposure. J Expo Sci Environ Epidemiol. 2020;30:171–83.

Article  CAS  Google Scholar 

Isaacs KK, Goldsmith MR, Egeghy P, Phillips K, Brooks R, Hong T, et al. Characterization and prediction of chemical functions and weight fractions in consumer products. Toxicol Rep. 2016;3:723–32.

Article  CAS  Google Scholar 

Knolhoff AM, Kneapler CN, Croley TR. Optimized chemical coverage and data quality for non-targeted screening applications using liquid chromatography/high-resolution mass spectrometry. Anal Chim Acta. 2019;1066:93–101.

Article  CAS  Google Scholar 

James-Todd TM, Chiu YH, Zota AR. Racial/ethnic disparities in environmental endocrine disrupting chemicals and women’s reproductive health outcomes: Epidemiological examples across the life course. Curr Epidemiol Rep. 2016;3:161–80.

Article  Google Scholar 

Preuss R, Angerer J, Drexler H. Naphthalene—an environmental and occupational toxicant. Int Arch Occup Environ Health. 2003;76:556–76.

Article  CAS  Google Scholar 

Okereke CS, Kadry AM, Abdel-Rahman MS, Davis RA, Friedman MA. Metabolism of benzophenone-3 in rats. Drug Metab Dispos. 1993;21:788–91.

CAS  Google Scholar 

留言 (0)

沒有登入
gif