Altered microstructural pattern of the cortex and basal forebrain cholinergic system in wilson’s disease: an automated fiber quantification tractography study

Ballinger, E. C., Ananth, M., Talmage, D. A., & Role, L. W. (2016). Basal Forebrain Cholinergic Circuits and Signaling in Cognition and Cognitive decline. Neuron, 91(6), 1199–1218. https://doi.org/10.1016/j.neuron.2016.09.006.

Article  CAS  Google Scholar 

Bartus, R. T., Dean, R. L. 3rd, Beer, B., & Lippa, A. S. (1982). The cholinergic hypothesis of geriatric memory dysfunction. Science, 217(4558), 408–414. https://doi.org/10.1126/science.7046051.

Article  CAS  Google Scholar 

Blake, M. G., & Boccia, M. M. (2018). Basal forebrain Cholinergic System and Memory. Current Topics In Behavioral Neurosciences, 37, 253–273. https://doi.org/10.1007/7854_2016_467.

Article  CAS  Google Scholar 

Bubb, E. J., Metzler-Baddeley, C., & Aggleton, J. P. (2018). The cingulum bundle: anatomy, function, and dysfunction. Neuroscience And Biobehavioral Reviews, 92, 104–127. https://doi.org/10.1016/j.neubiorev.2018.05.008.

Article  Google Scholar 

Bueno, A. P. A., Pinaya, W. H. L., Moura, L. M., Bertoux, M., Radakovic, R., Kiernan, M. C., & Sato, J. R. (2018). Structural and functional papez circuit integrity in amyotrophic lateral sclerosis. Brain Imaging Behav, 12(6), 1622–1630. https://doi.org/10.1007/s11682-018-9825-0.

Article  Google Scholar 

Chiesa, P. A., Cavedo, E., Grothe, M. J., Houot, M., Teipel, S. J., Potier, M. C., & Hampel, H. (2019). Relationship between basal forebrain resting-state functional connectivity and brain Amyloid-β deposition in cognitively intact older adults with subjective memory complaints. Radiology, 290(1), 167–176. https://doi.org/10.1148/radiol.2018180268.

Article  Google Scholar 

Cleymaet, S., Nagayoshi, K., Gettings, E., & Faden, J. (2019). A review and update on the diagnosis and treatment of neuropsychiatric Wilson disease. Expert Review Of Neurotherapeutics, 19(11), 1117–1126. https://doi.org/10.1080/14737175.2019.1645009.

Article  CAS  Google Scholar 

Daulatzai, M. A. (2016). Dysfunctional sensory modalities, Locus Coeruleus, and basal forebrain: early determinants that promote neuropathogenesis of cognitive and memory decline and Alzheimer’s Disease. Neurotoxicity Research, 30(3), 295–337. https://doi.org/10.1007/s12640-016-9643-3.

Article  Google Scholar 

Dong, T., Qiu, J., Cheng, H. D., Dong, W. W., Huang, P., Xu, C. S., & Yang, W. M. (2016). Impairment of time-based prospective memory in patients with Wilson’s disease. European Review For Medical And Pharmacological Sciences, 20(9), 1845–1851.

CAS  Google Scholar 

Dong, T., Yang, W. M., Wu, M. C., Zhang, J., Huang, P., Xu, C. S., & Gao, Z. L. (2019). Microstructure changes in whiter matter relate to cognitive impairment in Wilson’s disease. Bioscience Reports, 39(3), https://doi.org/10.1042/BSR20181651.

Dou, X., Yao, H., Feng, F., Wang, P., Zhou, B., Jin, D., & Liu, Y. (2020). Characterizing white matter connectivity in Alzheimer’s disease and mild cognitive impairment: an automated fiber quantification analysis with two independent datasets. Cortex; A Journal Devoted To The Study Of The Nervous System And Behavior, 129, 390–405. https://doi.org/10.1016/j.cortex.2020.03.032.

Article  Google Scholar 

Drachman, D. A., & Leavitt, J. (1974). Human memory and the cholinergic system. A relationship to aging? Archives Of Neurology, 30(2), 113–121. https://doi.org/10.1001/archneur.1974.00490320001001.

Article  CAS  Google Scholar 

Esposito, M. J., Occhionero, M., & Cicogna, P. (2015). Sleep deprivation and time-based prospective memory. Sleep, 38(11), 1823–1826. https://doi.org/10.5665/sleep.5172.

Article  Google Scholar 

Folstein, M. F., Folstein, S. E., & McHugh, P. R. (1975). “Mini-mental state”. A practical method for grading the cognitive state of patients for the clinician. Journal Of Psychiatric Research, 12(3), 189–198. https://doi.org/10.1016/0022-3956(75)90026-6.

Article  CAS  Google Scholar 

Gargouri, F., Gallea, C., Mongin, M., Pyatigorskaya, N., Valabregue, R., Ewenczyk, C., & Lehericy, S. (2019). Multimodal magnetic resonance imaging investigation of basal forebrain damage and cognitive deficits in Parkinson’s disease. Movement Disorders, 34(4), 516–525. https://doi.org/10.1002/mds.27561.

Article  Google Scholar 

Gonneaud, J., Rauchs, G., Groussard, M., Landeau, B., Mézenge, F., de La Sayette, V., & Desgranges, B. (2014). How do we process event-based and time-based intentions in the brain? An fMRI study of prospective memory in healthy individuals. Human Brain Mapping, 35(7), 3066–3082. https://doi.org/10.1002/hbm.22385.

Article  Google Scholar 

Graa, M., & Ergis, A. M. (2021). [Prospective memory, emotions and Alzheimer’s disease]. Geriatr Psychol Neuropsychiatr Vieil, 19(3), 332–340. https://doi.org/10.1684/pnv.2021.0959(Mémoire prospective, émotions et maladie d’Alzheimer.).

Article  Google Scholar 

Henry, J. D. (2021). Prospective memory impairment in neurological disorders: implications and management. Nat Rev Neurol, 17(5), 297–307. https://doi.org/10.1038/s41582-021-00472-1.

Article  Google Scholar 

Highley, J. R., Walker, M. A., Esiri, M. M., Crow, T. J., & Harrison, P. J. (2002). Asymmetry of the uncinate fasciculus: a post-mortem study of normal subjects and patients with schizophrenia. Cerebral Cortex, 12(11), 1218–1224. https://doi.org/10.1093/cercor/12.11.1218.

Article  Google Scholar 

Hu, S., Xu, C., Dong, T., Wu, H., Wang, Y., Wang, A., & Li, C. (2021). Structural and functional changes are related to Cognitive Status in Wilson’s Disease. Frontiers In Human Neuroscience, 15, 610947. https://doi.org/10.3389/fnhum.2021.610947.

Article  CAS  Google Scholar 

Hu, S., Xu, C., Wang, Y., Dong, T., Wu, H., Wang, A., & Qiu, B. (2022). Basal ganglia-orbitofrontal circuits are associated with prospective memory deficits in Wilson’s disease. Brain Imaging Behav, 16(1), 141–150. https://doi.org/10.1007/s11682-021-00485-w.

Article  Google Scholar 

Hua, K., Zhang, J., Wakana, S., Jiang, H., Li, X., Reich, D. S., & Mori, S. (2008). Tract probability maps in stereotaxic spaces: analyses of white matter anatomy and tract-specific quantification. Neuroimage, 39(1), 336–347. https://doi.org/10.1016/j.neuroimage.2007.07.053.

Article  Google Scholar 

Johnson, R. T., Yeatman, J. D., Wandell, B. A., Buonocore, M. H., Amaral, D. G., & Nordahl, C. W. (2014). Diffusion properties of major white matter tracts in young, typically developing children. Neuroimage, 88, 143–154. https://doi.org/10.1016/j.neuroimage.2013.11.025.

Article  Google Scholar 

Keller, S. S., Glenn, G. R., Weber, B., Kreilkamp, B. A., Jensen, J. H., Helpern, J. A., & Bonilha, L. (2017). Preoperative automated fibre quantification predicts postoperative seizure outcome in temporal lobe epilepsy. Brain, 140(1), 68–82. https://doi.org/10.1093/brain/aww280.

Article  Google Scholar 

Lawrence, A., Saini, J., Sinha, S., Rao, S., Naggappa, M., Bindu, P. S., & Taly, A. B. (2016). Improvement of Diffusion Tensor Imaging (DTI) parameters with Decoppering Treatment in Wilson’s Disease. JIMD Rep, 25, 31–37. https://doi.org/10.1007/8904_2015_466.

Article  CAS  Google Scholar 

Liu, Q., Zhu, Z., Teipel, S. J., Yang, J., Xing, Y., Tang, Y., & Jia, J. (2017). White matter damage in the Cholinergic System contributes to cognitive impairment in subcortical vascular cognitive impairment, no dementia. Frontiers In Aging Neuroscience, 9, 47. https://doi.org/10.3389/fnagi.2017.00047.

Article  Google Scholar 

Loprinzi, P. D., Edwards, M. K., & Frith, E. (2018). Exercise and prospective memory. J Lifestyle Med, 8(2), 51–59. https://doi.org/10.15280/jlm.2018.8.2.51.

Article  Google Scholar 

Luo, C., Li, M., Qin, R., Chen, H., Huang, L., Yang, D., & Bai, F. (2020). Long longitudinal tract lesion contributes to the progression of Alzheimer’s Disease. Frontiers In Neurology, 11, 503235. https://doi.org/10.3389/fneur.2020.503235.

Article  Google Scholar 

Maldonado, I. L., de Matos, P., Castro Cuesta, V., Herbet, T. A., G., & Destrieux, C. (2020). The human cingulum: from the limbic tract to the connectionist paradigm. Neuropsychologia, 144, 107487. https://doi.org/10.1016/j.neuropsychologia.2020.107487.

Article  Google Scholar 

Mesulam, M. (2004). The cholinergic lesion of Alzheimer’s disease: pivotal factor or side show? Learning & Memory, 11(1), 43–49. https://doi.org/10.1101/lm.69204.

Article  Google Scholar 

Nemy, M., Cedres, N., Grothe, M. J., Muehlboeck, J. S., Lindberg, O., Nedelska, Z., & Ferreira, D. (2020). Cholinergic white matter pathways make a stronger contribution to attention and memory in normal aging than cerebrovascular health and nucleus basalis of meynert. Neuroimage, 211, 116607. https://doi.org/10.1016/j.neuroimage.2020.116607.

Article  Google Scholar 

Niida, R., Yamagata, B., Niida, A., Uechi, A., Matsuda, H., & Mimura, M. (2018). Aberrant anterior thalamic Radiation structure in bipolar disorder: a diffusion Tensor Tractography Study. Frontiers In Psychiatry, 9, 522. https://doi.org/10.3389/fpsyt.2018.00522.

Article  Google Scholar 

Poujois, A., Mikol, J., & Woimant, F. (2017). Wilson disease: brain pathology. Handbook Of Clinical Neurology, 142, 77–89. https://doi.org/10.1016/B978-0-444-63625-6.00008-2.

Article  Google Scholar 

Powers, J. P., McMillan, C. T., Brun, C. C., Yushkevich, P. A., Zhang, H., Gee, J. C., & Grossman, M. (2013). White matter disease correlates with lexical retrieval deficits in primary progressive aphasia. Frontiers In Neurology, 4, 212. https://doi.org/10.3389/fneur.2013.00212.

Article  Google Scholar 

Salari, M., Fayyazi, E., & Mirmosayyeb, O. (2018). Magnetic resonance imaging findings in diagnosis and prognosis of Wilson disease. J Res Med Sci, 23, 23. https://doi.org/10.4103/jrms.JRMS_362_16.

Article  Google Scholar 

Selden, N. R., Gitelman, D. R., Salamon-Murayama, N., Parrish, T. B., & Mesulam, M. M. (1998). Trajectories of cholinergic pathways within the cerebral hemispheres of the human brain. Brain 121 (Pt, (12), 2249–2257. https://doi.org/10.1093/brain/121.12.2249.

Sinha, S., Taly, A. B., Ravishankar, S., Prashanth, L. K., Venugopal, K. S., Arunodaya, G. R., & Swamy, H. S. (2006). Wilson’s disease: cranial MRI observations and clinical correlation. Neuroradiology, 48(9), 613–621. https://doi.org/10.1007/s00234-006-0101-4.

Article  CAS  Google Scholar 

Smith, S. M., Jenkinson, M., Johansen-Berg, H., Rueckert, D., Nichols, T. E., Mackay, C. E., & Behrens, T. E. (2006). Tract-based spatial statistics: voxelwise analysis of multi-subject diffusion data. Neuroimage, 31(4), 1487–1505. https://doi.org/10.1016/j.neuroimage.2006.02.024.

Article  Google Scholar 

Taoka, T., Iwasaki, S., Sakamoto, M., Nakagawa, H., Fukusumi, A., Myochin, K., & Kichikawa, K. (2006). Diffusion anisotropy and diffusivity of white matter tracts within the temporal stem in Alzheimer disease: evaluation of the “tract of interest” by diffusion tensor tractography. Ajnr. American Journal Of Neuroradiology, 27(5), 1040–1045.

CAS  Google Scholar 

Tusa, R. J., & Ungerleider, L. G. (1985). The inferior longitudinal fasciculus: a reexamination in humans and monkeys. Annals Of Neurology, 18(5), 583–591. https://doi.org/10.1002/ana.410180512.

Article  CAS  Google Scholar 

Vaillancourt, D. E., Spraker, M. B., Prodoehl, J., Abraham, I., Corcos, D. M., Zhou, X. J., & Little, D. M. (2009). High-resolution diffusion tensor imaging in the substantia nigra of de novo Parkinson disease. Neurology, 72(16), 1378–1384. https://doi.org/10.1212/01.wnl.0000340982.01727.6e.

Article  CAS  Google Scholar 

Wakana, S., Caprihan, A., Panzenboeck, M. M., Fallon, J. H., Perry, M., Gollub, R. L., & Mori, S. (2007). Reproducibility of quantitative tractography methods applied to cerebral white matter. Neuroimage, 36(3), 630–644. https://doi.org/10.1016/j.neuroimage.2007.02.049.

Article  Google Scholar 

Wakana, S., Jiang, H., Nagae-Poetscher, L. M., van Zijl, P. C., & Mori, S. (2004). Fiber tract-based atlas of human white matter anatomy. Radiology, 230(1), 77–87. https://doi.org/10.1148/radiol.2301021640.

Article  Google Scholar 

Wang, Y., Wang, X., Shi, H., Xia, L., Dong, J., Nguchu, B. A., & Qiu, B. (2021). Microstructural properties of major white matter tracts in constant exotropia before and after strabismus surgery. British Journal Of Ophthalmology. https://doi.org/10.1136/bjophthalmol-2020-317948.

Article  Google Scholar 

Yeatman, J. D., Dougherty, R. F., Myall, N. J., Wandell, B. A., & Feldman, H. M. (2012). Tract profiles of white matter properties: automating fiber-tract quantification. PLoS One, 7(11), e49790.

留言 (0)

沒有登入
gif