Isolation and characterization of apical papilla cells from root end of human third molar and their differentiation into cementoblast cells: an in vitro study

Iwasaki K, Washio K, Meinzer W, Tsumanuma Y, Yano K, Ishikawa I. Application of cell-sheet engineering for new formation of cementum around dental implants. Heliyon. 2019;5(6): e01991.

Article  Google Scholar 

Page RC, Offenbacher S, Schroeder HE, Seymour GJ, Kornman KS. Advances in the pathogenesis of periodontitis: summary of developments, clinical implications and future directions. Periodontol. 1997;14(1):216–48.

Article  CAS  Google Scholar 

Pihlstrom BL, Michalowicz BS, Johnson NW. Periodontal diseases. The lancet. 2005;366(9499):1809–20.

Article  Google Scholar 

He X-T, Wu R-X, Chen F-M. Periodontal tissue engineering and regeneration. Principles of Tissue Engineering: Elsevier; 2020. p. 1221–49.

Google Scholar 

Aleksandar M, Wolf E, Magnus E, Stavropoulos A, Bengt G. The lived experience of performing a periodontal treatment in the context of general dentistry. BDJ Open. 2021;7(1):1.

Google Scholar 

Al-Shammari KF, Al-Khabbaz AK, Al-Ansari JM, Neiva R, Wang HL. Risk indicators for tooth loss due to periodontal disease. J Periodontol. 2005;76(11):1910–8.

Article  Google Scholar 

Scannapieco FA, Cantos A. Oral inflammation and infection, and chronic medical diseases: implications for the elderly. Periodontol. 2016;72(1):153–75.

Article  Google Scholar 

Pihlstrom BL, Michalowicz BS, Johnson NWJS-. Periodontal diseases Lancet 366: 1809–1820. doi: 10.1016. 2005:67728-.

Rios HF, Lin Z, Oh B, Park CH, Giannobile WV. Cell-and gene-based therapeutic strategies for periodontal regenerative medicine. J Periodontol. 2011;82(9):1223–37.

Article  CAS  Google Scholar 

Chen F-M, Zhang J, Zhang M, An Y, Chen F, Wu Z-F. A review on endogenous regenerative technology in periodontal regenerative medicine. Biomaterials. 2010;31(31):7892–927.

Article  CAS  Google Scholar 

Shemtov-Yona K, Rittel D. An overview of the mechanical integrity of dental implants. BioMed research international. 2015;2015:547384.

Article  Google Scholar 

Kumar G, Narayan B. Osseointegrated titanium implants: Requirements for ensuring a long-lasting, direct bone-to-implant anchorage in man. Classic papers in orthopaedics: Springer; 2014. p. 507–9.

Mandracci P, Mussano F, Rivolo P, Carossa S. Surface treatments and functional coatings for biocompatibility improvement and bacterial adhesion reduction in dental implantology. Coatings. 2016;6(1):7.

Article  Google Scholar 

Abuhussein H, Pagni G, Rebaudi A, Wang HL. The effect of thread pattern upon implant osseointegration. Clin Oral Implant Res. 2010;21(2):129–36.

Article  Google Scholar 

Carvalho SM, Oliveira AA, Jardim CA, Melo CB, Gomes DA, de Fátima LM, et al. Characterization and induction of cementoblast cell proliferation by bioactive glass nanoparticles. Journal of tissue engineering regenerative medicine. 2012;6(10):813–21.

Article  CAS  Google Scholar 

Kitagawa M, Kudo Y, Iizuka S, Ogawa I, Abiko Y, Miyauchi M, et al. Effect of F-spondin on cementoblastic differentiation of human periodontal ligament cells. Biochemical biophysical research communications. 2006;349(3):1050–6.

Article  CAS  Google Scholar 

Kitagawa M, Tahara H, Kitagawa S, Oka H, Kudo Y, Sato S, et al. Characterization of established cementoblast-like cell lines from human cementum-lining cells in vitro and in vivo. Bone. 2006;39(5):1035–42. Epub 2006/07/22. doi: https://doi.org/10.1016/j.bone.2006.05.022. PubMed PMID: 16857433.

Li B, Ouchi T, Cao Y, Zhao Z, Men Y. Dental-Derived Mesenchymal Stem Cells: State of the Art. Frontiers in Cell Developmental Biology. 2021;9.

Huang GT-J, Sonoyama W, Liu Y, Liu H, Wang S, Shi S. The hidden treasure in apical papilla: the potential role in pulp/dentin regeneration and bioroot engineering. Journal of endodontics. 2008;34(6):645–51.

Sonoyama W, Liu Y, Fang D, Yamaza T, Seo B-M, Zhang C, et al. Mesenchymal stem cell-mediated functional tooth regeneration in swine. PLoS ONE. 2006;1(1): e79.

Article  Google Scholar 

Sonoyama W, Liu Y, Yamaza T, Tuan RS, Wang S, Shi S, et al. Characterization of the apical papilla and its residing stem cells from human immature permanent teeth: a pilot study. Journal of endodontics. 2008;34(2):166–71.

Article  Google Scholar 

Chrepa V, Pitcher B, Henry MA, Diogenes A. Survival of the apical papilla and its resident stem cells in a case of advanced pulpal necrosis and apical periodontitis. Journal of endodontics. 2017;43(4):561–7.

Article  Google Scholar 

Kang J, Fan W, Deng Q, He H, Huang F. Stem cells from the apical papilla: a promising source for stem cell-based therapy. BioMed Research International. 2019;2019.

Tavakol S, Azedi F, Hoveizi E, Ai J, Joghataei MT. Human endometrial stem cell isolation from endometrium and menstrual blood. Bio-protocol. 2018;8(2):e2693.

Article  Google Scholar 

Iwata T, Mizuno N, Nagahara T, Kaneda-Ikeda E, Kajiya M, Kitagawa M, et al. Identification of regulatory mRNA and microRNA for differentiation into cementoblasts and periodontal ligament cells. J Periodontal Res. 2021;56(1):69–82.

Article  CAS  Google Scholar 

Di Vito A, Giudice A, Chiarella E, Malara N, Bennardo F, Fortunato L. In vitro long-term expansion and high osteogenic potential of periodontal ligament stem cells: More than a mirage. Cell Transplant. 2019;28(1):129–39.

Article  Google Scholar 

Kitagawa M, Ao M, Miyauchi M, Abiko Y, Takata T. F-spondin regulates the differentiation of human cementoblast-like (HCEM) cells via BMP7 expression. Biochemical biophysical research communications. 2012;418(2):229–33.

Article  CAS  Google Scholar 

Liao H, Liu H, Sun H, Xiang J, Wang X, Jiang C, et al. MiR-361-3p/Nfat5 signaling axis controls cementoblast differentiation. J Dent Res. 2019;98(10):1131–9.

Article  CAS  Google Scholar 

Asl MA, Karbasi S, Beigi-Boroujeni S, Benisi SZ, Saeed M. Evaluation of the effects of starch on polyhydroxybutyrate electrospun scaffolds for bone tissue engineering applications. Int J Biol Macromol. 2021;191:500–13.

Article  CAS  Google Scholar 

Gholami L, Hendi SS, Saidijam M, Mahmoudi R, Tarzemany R, Arkian A, et al. Near-infrared 940-nm diode laser photobiomodulation of inflamed periodontal ligament stem cells. Lasers Med Sci. 2022;37(1):449–59.

Article  Google Scholar 

Komaki M, Iwasaki K, Arzate H, Narayanan AS, Izumi Y, Morita I. Cementum protein 1 (CEMP1) induces a cementoblastic phenotype and reduces osteoblastic differentiation in periodontal ligament cells. J Cell Physiol. 2012;227(2):649–57.

Article  CAS  Google Scholar 

Vater C, Kasten P, Stiehler M. Culture media for the differentiation of mesenchymal stromal cells. Acta Biomater. 2011;7(2):463–77.

Article  CAS  Google Scholar 

Franceschi RT, Iyer BS. Relationship between collagen synthesis and expression of the osteoblast phenotype in MC3T3-E1 cells. Journal of Bone Mineral Research. 1992;7(2):235–46.

Article  CAS  Google Scholar 

Jaiswal N, Haynesworth SE, Caplan AI, Bruder SP. Osteogenic differentiation of purified, culture-expanded human mesenchymal stem cells in vitro. J Cell Biochem. 1997;64(2):295–312.

Article  CAS  Google Scholar 

Langenbach F, Handschel J. Effects of dexamethasone, ascorbic acid and β-glycerophosphate on the osteogenic differentiation of stem cells in vitro. Stem cell research therapy. 2013;4(5):1–7.

Article  Google Scholar 

Cao H-L, Chung JH, Choung P-H. Allogeneic fibrin clot for odontogenic/cementogenic differentiation of human dental mesenchymal stem cells. Tissue Engineering and Regenerative Medicine. 2020;17(4):511–24.

Article  CAS  Google Scholar 

Torii D, Tsutsui T, Watanabe N, Konishi K. Bone morphogenetic protein 7 induces cementogenic differentiation of human periodontal ligament-derived mesenchymal stem cells. Odontology. 2016;104(1):1–9.

Article  CAS  Google Scholar 

Du Y, Ling J, Wei X, Ning Y, Xie N, Gu H, et al. Wnt/β-catenin signaling participates in cementoblast/osteoblast differentiation of dental follicle cells. Connect Tissue Res. 2012;53(5):390–7.

Article  CAS  Google Scholar 

Aida Y, Kurihara H, Kato K. Wnt3a promotes differentiation of human bone marrow-derived mesenchymal stem cells into cementoblast-like cells. In Vitro Cellular Developmental Biology-Animal. 2018;54(6):468–76.

Article  CAS  Google Scholar 

Wen X, Liu L, Deng M, Liu R, Zhang L, Nie X. In vitro cementoblast-like differentiation of postmigratory neural crest-derived p75+ stem cells with dental follicle cell conditioned medium. Exp Cell Res. 2015;337(1):76–86.

Article  CAS  Google Scholar 

Ding G, Wang W, Liu Y, An Y, Zhang C, Shi S, et al. Effect of cryopreservation on biological and immunological properties of stem cells from apical papilla. J Cell Physiol. 2010;223(2):415–22.

CAS  Google Scholar 

Lei G, Yan M, Wang Z, Yu Y, Tang C, Wang Z, et al. Dentinogenic capacity: immature root papilla stem cells versus mature root pulp stem cells. Biol Cell. 2011;103(4):185–96.

Article  Google Scholar 

Chen K, Xiong H, Huang Y, Liu C. Comparative analysis of in vitro periodontal characteristics of stem cells from apical papilla (SCAP) and periodontal ligament stem cells (PDLSCs). Arch Oral Biol. 2013;58(8):997–1006.

Article  CAS  Google Scholar 

Carvalho PP, Leonor IB, Smith BJ, Dias IR, Reis RL, Gimble JM, et al. Undifferentiated human adipose-derived stromal/stem cells loaded onto wet-spun starch–polycaprolactone scaffolds enhance bone regeneration: Nude mice calvarial defect in vivo study. J Biomed Mater Res, Part A. 2014;102(9):3102–11.

Article  Google Scholar 

Vashisth P, Bellare JR, Medicine. Development of hybrid scaffold with biomimetic 3D architecture for bone regeneration. Nanomedicine: Nanotechnology, Biology. 2018;14(4):1325–36.

Zhou C, Ye C, Zhao C, Liao J, Li Y, Chen H, et al. A Composite Tissue Engineered Bone Material Consisting of Bone Mesenchymal Stem Cells, Bone Morphogenetic Protein 9 (BMP9) Gene Lentiviral Vector, and P3HB4HB Thermogel (BMSCs-LV-BMP9-P3HB4HB) Repairs Calvarial Skull Defects in Rats by Expression of Osteogenic Factors. Medical Science Monitor: International Medical Journal of Experimental Clinical Research. 2020;26:e924666–71.

Article  CAS  Google Scholar 

Bao X, Liu Y, Han G, Zuo Z, Hu M. The effect on proliferation and differentiation of cementoblast by using sclerostin as inhibitor. Int J Mol Sci. 2013;14(10):21140–52.

Article  Google Scholar 

Kadokura H, Yamazaki T, Masuda Y, Kato Y, Hasegawa A, Sakagami H, et al. Establishment of a primary culture system of human periodontal ligament cells that differentiate into cementum protein 1-expressing cementoblast-like cells. in vivo. 2019;33(2):349–52.

Bonewald LF. The amazing osteocyte. Journal of bone mineral research. 2011;26(2):229–38.

Article  CAS  Google Scholar 

Link DP, Gardel LS, Correlo VM, Gomes ME, Reis RL. Osteogenic properties of starch poly (ε-caprolactone)(SPCL) fiber meshes loaded with osteoblast-like cells in a rat critical-sized cranial defect. J Biomed Mater Res, Part A. 2013;101(11):3059–65.

Google Scholar 

Hoz L, Romo E, Zeichner-David M, Sanz M, Nuñez J, Gaitán L, et al. Cementum protein 1 (CEMP1) induces differentiation by human periodontal ligament cells under three-dimensional culture conditions. Cell Biol Int. 2012;36(2):129–36.

Article  CAS 

留言 (0)

沒有登入
gif