Low-dose tributyltin triggers human chondrocyte senescence and mouse articular cartilage aging

Anerillas C, Abdelmohsen K, Gorospe M (2020) Regulation of senescence traits by MAPKs. Geroscience 42(2):397–408. https://doi.org/10.1007/s11357-020-00183-3

Article  Google Scholar 

Antizar-Ladislao B (2008) Environmental levels, toxicity and human exposure to tributyltin (TBT)-contaminated marine environment: a review. Environ Int 34(2):292–308. https://doi.org/10.1016/j.envint.2007.09.005

Article  CAS  Google Scholar 

Baker AH, Watt J, Huang CK, Gerstenfeld LC, Schlezinger JJ (2015) Tributyltin engages multiple nuclear receptor pathways and suppresses osteogenesis in bone marrow multipotent stromal cells. Chem Res Toxicol 28(6):1156–1166. https://doi.org/10.1021/tx500433r

Article  CAS  Google Scholar 

Baker AH, Wu TH, Bolt AM, Gerstenfeld LC, Mann KK, Schlezinger JJ (2017) From the cover: tributyltin alters the bone marrow microenvironment and suppresses B cell development. Toxicol Sci 158(1):63–75. https://doi.org/10.1093/toxsci/kfx067

Article  CAS  Google Scholar 

Banu N, Tsuchiya, Sawada R (2009) Effects of Tin compounds on human chondrogenic activity in vitro. In: Ikura K et al (eds) Animal cell technology: basic & applied aspects, vol 15: pp 181–186. https://doi.org/10.1007/978-1-4020-9646-4_29

Barone S Jr, Stanton ME, Mundy WR (1995) Neurotoxic effects of neonatal triethyltin (TET) exposure are exacerbated with aging. Neurobiol Aging 16(5):723–735. https://doi.org/10.1016/0197-4580(95)00089-w

Article  CAS  Google Scholar 

Cai J, Wang M, Li B, Wang C, Chen Y, Zuo Z (2009) Apoptotic and necrotic action mechanisms of trimethyltin in human hepatoma G2 (HepG2) cells. Chem Res Toxicol 22(9):1582–1587. https://doi.org/10.1021/tx900120z

Article  CAS  Google Scholar 

Chen YJ, Chan DC, Lan KC et al (2015) PPARγ is involved in the hyperglycemia-induced inflammatory responses and collagen degradation in human chondrocytes and diabetic mouse cartilages. J Orthop Res 33(3):373–381. https://doi.org/10.1002/jor.22770

Article  CAS  Google Scholar 

Chien LC, Hung TC, Choang KY et al (2002) Daily intake of TBT, Cu, Zn, Cd and As for fishermen in Taiwan. Sci Total Environ 285(1–3):177–185. https://doi.org/10.1016/s0048-9697(01)00916-0

Article  CAS  Google Scholar 

Chung YP, Chen YW, Weng TI, Yang RS, Liu SH (2020) Arsenic induces human chondrocyte senescence and accelerates rat articular cartilage aging. Arch Toxicol 94(1):89–101. https://doi.org/10.1007/s00204-019-02607-2

Article  CAS  Google Scholar 

Coppé JP, Desprez PY, Krtolica A, Campisi J (2010) The senescence-associated secretory phenotype: the dark side of tumor suppression. Annu Rev Pathol 5:99–118. https://doi.org/10.1146/annurev-pathol-121808-102144

Article  CAS  Google Scholar 

Coryell PR, Diekman BO, Loeser RF (2021) Mechanisms and therapeutic implications of cellular senescence in osteoarthritis. Nat Rev Rheumatol 17(1):47–57. https://doi.org/10.1038/s41584-020-00533-7

Article  Google Scholar 

Farr JN, Fraser DG, Wang H et al (2016) Identification of senescent cells in the bone microenvironment. J Bone Miner Res 31(11):1920–1929. https://doi.org/10.1002/jbmr.2892

Article  CAS  Google Scholar 

Fitzner B, Müller S, Walther M et al (2012) Senescence determines the fate of activated rat pancreatic stellate cells. J Cell Mol Med 16(11):2620–2630. https://doi.org/10.1111/j.1582-4934.2012.01573.x

Article  CAS  Google Scholar 

Gadogbe M, Bao W, Wels BR et al (2019) Levels of tin and organotin compounds in human urine samples from Iowa, United States. J Environ Sci Health A Tox Hazard Subst Environ Eng 54(9):884–890. https://doi.org/10.1080/10934529.2019.1605779

Article  CAS  Google Scholar 

Guo Q, Chen X, Chen J et al (2021) STING promotes senescence, apoptosis, and extracellular matrix degradation in osteoarthritis via the NF-κB signaling pathway. Cell Death Dis 12(1):13. https://doi.org/10.1038/s41419-020-03341-9

Article  CAS  Google Scholar 

Han Y, Zhou CM, Shen H et al (2020) Attenuation of ataxia telangiectasia mutated signalling mitigates age-associated intervertebral disc degeneration. Aging Cell 19(7):e13162. https://doi.org/10.1111/acel.13162

Article  CAS  Google Scholar 

Hong EH, Lee SJ, Kim JS et al (2010) Ionizing radiation induces cellular senescence of articular chondrocytes via negative regulation of SIRT1 by p38 kinase. J Biol Chem 285(2):1283–1295. https://doi.org/10.1074/jbc.M109.058628

Article  CAS  Google Scholar 

Kanatsu-Shinohara M, Yamamoto T, Toh H et al (2019) Aging of spermatogonial stem cells by Jnk-mediated glycolysis activation. Proc Natl Acad Sci USA 116(33):16404–16409. https://doi.org/10.1073/pnas.1904980116

Article  CAS  Google Scholar 

Kang C, Xu Q, Martin TD et al (2015) The DNA damage response induces inflammation and senescence by inhibiting autophagy of GATA4. Science 349(6255):aaa5612. https://doi.org/10.1126/science.aaa5612

Article  CAS  Google Scholar 

Kang SW, Kim J, Shin DY (2016) Inhibition of senescence and promotion of the proliferation of chondrocytes from articular cartilage by CsA and FK506 involves inhibition of p38MAPK. Mech Ageing Dev 153:7–13. https://doi.org/10.1016/j.mad.2015.12.002

Article  CAS  Google Scholar 

Kang D, Shin J, Cho Y et al (2019) Stress-activated miR-204 governs senescent phenotypes of chondrocytes to promote osteoarthritis development. Sci Transl Med. https://doi.org/10.1126/scitranslmed.aar6659

Article  Google Scholar 

Kannan K, Senthilkumar K, Giesy JP (1999) Occurrence of butyltin compounds in human blood. Environ Sci Technol 33(10):1776–1779. https://doi.org/10.1021/es990011w

Article  CAS  Google Scholar 

Kim HN, Chang J, Shao L et al (2017) DNA damage and senescence in osteoprogenitors expressing Osx1 may cause their decrease with age. Aging Cell 16(4):693–703. https://doi.org/10.1111/acel.12597

Article  CAS  Google Scholar 

Kumari R, Jat P (2021) Mechanisms of cellular senescence: cell cycle arrest and senescence associated secretory phenotype. Front Cell Dev Biol 9:645593. https://doi.org/10.3389/fcell.2021.645593

Article  Google Scholar 

Kuwahara M, Kadoya K, Kondo S et al (2020) CCN3 (NOV) drives degradative changes in aging articular cartilage. Int J Mol Sci. https://doi.org/10.3390/ijms21207556

Article  Google Scholar 

Lanna A, Henson SM, Escors D, Akbar AN (2014) The kinase p38 activated by the metabolic regulator AMPK and scaffold TAB1 drives the senescence of human T cells. Nat Immunol 15(10):965–972. https://doi.org/10.1038/ni.2981

Article  CAS  Google Scholar 

Laranjeiro F, Sánchez-Marín P, Oliveira IB, Galante-Oliveira S, Barroso C (2018) Fifteen years of imposex and tributyltin pollution monitoring along the Portuguese coast. Environ Pollut 232:411–421. https://doi.org/10.1016/j.envpol.2017.09.056

Article  CAS  Google Scholar 

Lawrence S, Pellom ST Jr, Shanker A, Whalen MM (2016) Tributyltin exposure alters cytokine levels in mouse serum. J Immunotoxicol 13(6):870–878. https://doi.org/10.1080/1547691x.2016.1221867

Article  CAS  Google Scholar 

Lee CC, Hsieh CY, Tien CJ (2006) Factors influencing organotin distribution in different marine environmental compartments, and their potential health risk. Chemosphere 65(4):547–559. https://doi.org/10.1016/j.chemosphere.2006.02.037

Article  CAS  Google Scholar 

Lee JJ, Lee JH, Ko YG, Hong SI, Lee JS (2010) Prevention of premature senescence requires JNK regulation of Bcl-2 and reactive oxygen species. Oncogene 29(4):561–575. https://doi.org/10.1038/onc.2009.355

Article  CAS  Google Scholar 

Li Y, Liu J, Li Q (2010) Mechanisms by which the antitumor compound di-n-butyl-di-(4-chlorobenzohydroxamato)tin(IV) induces apoptosis and the mitochondrial-mediated signaling pathway in human cancer SGC-7901 cells. Mol Carcinog 49(6):566–581. https://doi.org/10.1002/mc.20623

Article  CAS  Google Scholar 

Li M, Cheng D, Li H, Yao W, Guo D, Wang S, Si J (2021) Tributyltin perturbs femoral cortical architecture and polar moment of inertia in rat. BMC Musculoskelet Disord 22(1):427. https://doi.org/10.1186/s12891-021-04298-2

Article  CAS  Google Scholar 

Loeser RF, Collins JA, Diekman BO (2016) Ageing and the pathogenesis of osteoarthritis. Nat Rev Rheumatol 12(7):412–420. https://doi.org/10.1038/nrrheum.2016.65

Article  CAS  Google Scholar 

Lou C, Deng A, Zheng H et al (2020) Pinitol suppresses TNF-α-induced chondrocyte senescence. Cytokine 130:155047. https://doi.org/10.1016/j.cyto.2020.155047

Article  CAS  Google Scholar 

Ma Y, Qi M, An Y et al (2018) Autophagy controls mesenchymal stem cell properties and senescence during bone aging. Aging Cell. https://doi.org/10.1111/acel.12709

Article  Google Scholar 

McCulloch K, Litherland GJ, Rai TS (2017) Cellular senescence in osteoarthritis pathology. Aging Cell 16(2):210–218. https://doi.org/10.1111/acel.12562

Article  CAS  Google Scholar 

Mino Y, Amano F, Yoshioka T, Konishi Y (2008) Determination of organotins in human breast milk by gas chromatography with flame photometric detection. J Health Sci 54(2):224–228. https://doi.org/10.1248/jhs.54.224

Article  CAS  Google Scholar 

Penninks AH (1993) The evaluation of data-derived safety factors for bis(tri-n-butyltin)oxide. Food Addit Contam 10(3):351–361. https://doi.org/10.1080/02652039309374157

Article  CAS  Google Scholar 

Qin R, Sun J, Wu J, Chen L (2019) Pyrroloquinoline quinone prevents knee osteoarthritis by inhibiting oxidative stress and chondrocyte senescence. Am J Transl Res 11(3):1460–1472

CAS  Google Scholar 

Resgala LCR, Santana HS, Portela BSM et al (2019) Effects of tributyltin (TBT) on rat bone and mineral metabolism. Cell Physiol Biochem 52(5):1166–1177. https://doi.org/10.33594/000000079

Article  CAS  Google Scholar 

Scallet AC, Pothuluri N, Rountree RL, Matthews JC (2000) Quantitating silver-stained neurodegeneration: the neurotoxicity of trimethlytin (TMT) in aged rats. J Neurosci Methods 98(1):69–76. https://doi.org/10.1016/s0165-0270(00)00191-6

Article  CAS  Google Scholar 

Schøyen M, Green NW, Hjermann D et al (2019) Levels and trends of tributyltin (TBT) and imposex in dogwhelk (Nucella lapillus) along the Norwegian coastline from 1991 to 2017. Mar Environ Res 144:1–8. https://doi.org/10.1016/j.marenvres.2018.11.011

Article  CAS  Google Scholar 

Sessions GA, Copp ME, Liu JY, Sinkler MA, D’Costa S, Diekman BO (2019) Controlled induction and targeted elimination of p16(INK4a)-expressing chondrocytes in cartilage explant culture. FASEB J 33(11):12364–12373. https://doi.org/10.1

留言 (0)

沒有登入
gif