Moderate alcohol consumption during pregnancy increases potency of two different drugs (the antifungal fluconazole and the antiepileptic valproate) in inducing craniofacial defects: prediction by the in vitro rat whole embryo culture

Bal-Price A, (Bette) Meek ME (2017) Adverse outcome pathways: application to enhance mechanistic understanding of neurotoxicity. Pharmacol Ther. https://doi.org/10.1016/j.pharmthera.2017.05.006

Article  Google Scholar 

Battistoni M, Bacchetta R, di Renzo F et al (2022) Modified Xenopus laevis approach (R-FETAX) as an alternative test for the evaluation of foetal valproate spectrum disorder. Reprod Toxicol 107:140–149. https://doi.org/10.1016/j.reprotox.2021.12.005

Article  CAS  Google Scholar 

Brown NA, Fabro S (1981) Quantitation of rat embryonic development in vitro: a morphological scoring system. Teratology. https://doi.org/10.1002/tera.1420240108

Article  Google Scholar 

Burton GJ, Jauniaux E (2018) Development of the human placenta and fetal heart: synergic or independent? Front Physiol 9:1–10. https://doi.org/10.3389/fphys.2018.00373

Article  CAS  Google Scholar 

Caputo C, Wood E, Jabbour L (2016) Impact of fetal alcohol exposure on body systems: a systematic review. Birth Defects Res C Embryo Today 108:174–180. https://doi.org/10.1002/bdrc.21129

Article  CAS  Google Scholar 

Clode AM, Pratten MK, Beck F (1987) A stage-dependent effect of ethanol on 9.5-day rat embryos grown in culture and the role played by the concomitant rise in osmolality. Teratology 35:395–403. https://doi.org/10.1002/tera.1420350313

Article  CAS  Google Scholar 

de Sanctis L, Memo L, Pichini S et al (2011) Fetal alcohol syndrome: new perspectives for an ancient and underestimated problem. J Matern Fetal Neonatal Med 24:34–37. https://doi.org/10.3109/14767058.2011.607576

Article  CAS  Google Scholar 

Duboule D (1994) Temporal colinearity and the phylotypic progression: a basis for the stability of a vertebrate Bauplan and the evolution of morphologies through heterochrony. Development. https://doi.org/10.1242/dev.1994.supplement.135

Article  Google Scholar 

ECVAM (2006) ECVAM DB-ALM Protocol n° 123: Embryotoxicity testing in post-implantation embryo culture—Method of Piersma

Ellis-Hutchings RG, Carney EW (2010) Whole embryo culture: a “New” technique that enabled decades of mechanistic discoveries. Birth Defects Res B Dev Reprod Toxicol 89:304–312. https://doi.org/10.1002/bdrb.20263

Article  CAS  Google Scholar 

Fadel RAR, Persaud TVN (1992) Effects of alcohol and caffeine on cultured whole rat embryos. Cells Tissues Organs. https://doi.org/10.1159/000147294

Article  Google Scholar 

Flak AL, Su S, Bertrand J et al (2014) The association of mild, moderate, and binge prenatal alcohol exposure and child neuropsychological outcomes: a meta-analysis. Alcohol Clin Exp Res 38:214–226. https://doi.org/10.1111/acer.12214

Article  Google Scholar 

Foster J, Patel S (2019) Prevalence of simultaneous use of alcohol and prescription medication in older adults: findings from a cross-sectional survey (Health Survey for England 2013). BMJ Open 9:e023730. https://doi.org/10.1136/bmjopen-2018-023730

Article  Google Scholar 

Giavini E, Broccia ML, Prati M et al (1992) Effects of ethanol and acetaldehyde on rat embryos developing in vitro. In Vitro Cell Dev Biol Anim. https://doi.org/10.1007/BF02631093

Article  Google Scholar 

Howley MM, Carter TC, Browne ML et al (2016) Fluconazole use and birth defects in the National Birth Defects Prevention Study. Am J Obstet Gynecol. https://doi.org/10.1016/j.ajog.2015.11.022

Article  Google Scholar 

Hunter ES, Tugman JA, Sulik KK, Sadler TW (1994) Effects of short-term exposure to ethanol on mouse embryos in vitro. Toxicol in Vitro. https://doi.org/10.1016/0887-2333(94)90163-5

Article  Google Scholar 

Irie N, Kuratani S (2011) Comparative transcriptome analysis reveals vertebrate phylotypic period during organogenesis. Nat Commun. https://doi.org/10.1038/ncomms1248

Article  Google Scholar 

Jacobs E (2000) Fetal alcohol syndrome and alcohol-related neurodevelopmental disorders. Pediatrics 106:358–361. https://doi.org/10.1542/peds.106.2.358

Article  Google Scholar 

Jentink J, Loane MA, Dolk H et al (2010) Valproic acid monotherapy in pregnancy and major congenital malformations. N Engl J Med. https://doi.org/10.1056/nejmoa0907328

Article  Google Scholar 

Joya X, Friguls B, Ortigosa S et al (2012) Determination of maternal-fetal biomarkers of prenatal exposure to ethanol: a review. J Pharm Biomed Anal 69:209–222. https://doi.org/10.1016/j.jpba.2012.01.006

Article  CAS  Google Scholar 

Kane MA, Folias AE, Wang FC, Napoli JL (2010) Ethanol elevates physiological all- trans -retinoic acid levels in select loci through altering retinoid metabolism in multiple loci: a potential mechanism of ethanol toxicity. FASEB J. https://doi.org/10.1096/fj.09-141572

Article  Google Scholar 

Kitchin KT, Ebron MT (1984) Further development of rodent whole embryo culture: solvent toxicity and water insoluble compound delivery system. Toxicology. https://doi.org/10.1016/0300-483X(84)90061-1

Article  Google Scholar 

Knöfler M, Haider S, Saleh L et al (2019) Human placenta and trophoblast development: key molecular mechanisms and model systems. Cell Mol Life Sci 76:3479–3496. https://doi.org/10.1007/s00018-019-03104-6

Article  CAS  Google Scholar 

Kotch LE, Sulik KK (1992) Experimental fetal alcohol syndrome: proposed pathogenic basis for a variety of associated facial and brain anomalies. Am J Med Genet. https://doi.org/10.1002/ajmg.1320440210

Article  Google Scholar 

Liu Y, Balaraman Y, Wang G et al (2009) Alcohol exposure alters DNA methylation profiles in mouse embryos at early neurulation. Epigenetics. https://doi.org/10.4161/epi.4.7.9925

Article  Google Scholar 

Mandal C, Halder D, Jung KH, Chai YG (2017) Gestational alcohol exposure altered DNA methylation status in the developing fetus. Int J Mol Sci 18:1386

Article  Google Scholar 

Memo L, Gnoato E, Caminiti S et al (2013) Fetal alcohol spectrum disorders and fetal alcohol syndrome: the state of the art and new diagnostic tools. Early Hum Dev 89:S40–S43. https://doi.org/10.1016/S0378-3782(13)70013-6

Article  CAS  Google Scholar 

Menegola E, Prati M, Broccia ML et al (1995) In vitro development of rat embryos obtained from diabetic mothers. Experientia. https://doi.org/10.1007/BF01928903

Article  Google Scholar 

Menegola E, Broccia ML, di Renzo F, Giavini E (2001) Antifungal triazoles induce malformations in vitro. Reprod Toxicol. https://doi.org/10.1016/S0890-6238(01)00143-5

Article  Google Scholar 

Menegola E, Veltman CHJ, Battistoni M et al (2021) An adverse outcome pathway on the disruption of retinoic acid metabolism leading to developmental craniofacial defects. Toxicology. https://doi.org/10.1016/j.tox.2021.152843

Article  Google Scholar 

Metruccio F, Palazzolo L, di Renzo F et al (2020) Development of an adverse outcome pathway for cranio-facial malformations: a contribution from in silico simulations and in vitro data. Food Chem Toxicol. https://doi.org/10.1016/j.fct.2020.111303

Article  Google Scholar 

Meurk CS, Broom A, Adams J et al (2014) Factors influencing women’s decisions to drink alcohol during pregnancy: findings of a qualitative study with implications for health communication. BMC Pregnancy Childbirth. https://doi.org/10.1186/1471-2393-14-246

Article  Google Scholar 

Mikamo H, Kawazoe K, Sato Y et al (1999) Penetration of oral fluconazole into gynecological tissues. Antimicrob Agents Chemother. https://doi.org/10.1128/aac.43.1.148

Article  Google Scholar 

Muggli E, Matthews H, Penington A et al (2017) Association between prenatal alcohol exposure and craniofacial shape of children at 12 months of age. JAMA Pediatr. https://doi.org/10.1001/jamapediatrics.2017.0778

Article  Google Scholar 

Nakashima H, Oniki K, Nishimura M et al (2015) Determination of the optimal concentration of valproic acid in patients with epilepsy: a population pharmacokinetic-pharmacodynamic analysis. PLoS ONE. https://doi.org/10.1371/journal.pone.0141266

Article  Google Scholar 

NEW DAT (1978) Whole-embryo culture and the study of mammalian embryos during organogenesis. Biol Rev 53:81–122. https://doi.org/10.1111/j.1469-185X.1978.tb00993.x

Article  CAS  Google Scholar 

Pilmis B, Jullien V, Sobel J et al (2015) Antifungal drugs during pregnancy: an updated review. J Antimicrob Chemother 70:14–22

Article  CAS  Google Scholar 

Priscott PK (1982) The effects of ethanol on rat embryos developing in vitro. Biochem Pharmacol. https://doi.org/10.1016/0006-2952(82)90588-3

Article  Google Scholar 

Santos SRCJ, Campos EV, Sanches C et al (2010) Fluconazole plasma concentration measurement by liquid chromatography for drug monitoring of burn patients. Clinics 65:237–243. https://doi.org/10.1590/S1807-59322010000200017

Article  Google Scholar 

Schölin L (2016) Prevention of harm caused by alcohol exposure in pregnancy: rapid review and case studies from Member States. World Health Organization. Regional Office for Europe. https://apps.who.int/iris/handle/10665/329491. Accessed 27 Jul 2022

Smith SM, Garic A, Flentke GR, Berres ME (2014) Neural crest development in fetal alcohol syndrome. Birth Defects Res C Embryo Today. https://doi.org/10.1002/bdrc.21078

Article  Google Scholar 

Sulik KK (2005) Genesis of alcohol-induced craniofacial dysmorphism. Exp Biol Med 230:366–375. https://doi.org/10.1177/15353702-0323006-04

Article  CAS  Google Scholar 

Tiboni GM (1993) Second branchial arch anomalies induced by fluconazole, a bis-triazole antifungal agent, in cultured mouse embryos. Res Commun Chem Pathol Pharmacol 79:381–384

CAS  Google Scholar 

Turnbull DM, Rawlins MD, Weightman D, Chadwick DW (1983) Plasma concentrations of sodium valproate: their clinical value. Ann Neurol. https://doi.org/10.1002/ana.410140107

Article  Google Scholar 

van Maele-Fabry G, Gofflot F, Clotman F, Picard JJ (1995) Alterations of mouse embryonic branchial nerves and ganglia induced by ethanol. Neurotoxicol Teratol. https://doi.org/10.1016/0892-0362(95)00009-G

Article  Google Scholar 

Wallén E, Auvinen P, Kaminen-Ahola N (2021) The effects of early prenatal alcohol exposure on epigenome and embryonic development. Genes (basel) 12:1095

Article  Google Scholar 

Willford JA, Leech SL, Day NL (2006) Moderate prenatal alcohol exposure and cognitive status of children at age 10. Alcohol Clin Exp Res. https://doi.org/10.1111/j.1530-0277.2006.00119.x

Article  Google Scholar 

Wynter JM, Walsh DA, Webster WS et al (1983) Teratogenesis after acute alcohol exposure in cultured rat embryos. Teratog Carcinog Mutagen. https://doi.org/10.1002/1520-6866(1990)3:5%3c421::AID-TCM1770030504%3e3.0.CO;2-V

Article  Google Scholar 

Zawab A, Carmody J (2014) Safe use of sodium valproate. Aust Prescr. https://doi.org/10.18773/austprescr.2014.048

Article  Google Scholar 

Zhou FC, Zhao Q, Liu Y et al (2011) Alteration of gene expression by alcohol exposure at early neurulation. BMC Genomics. https://doi.org/10.1186/1471-2164-12-124

Article 

留言 (0)

沒有登入
gif