Improvement of Oxidative Stress-induced Cytotoxicity of Angelica keiskei (Miq.) Koidz. Leaves Extract through Activation of Heme Oxygenase-1 in C2C12 Murine Myoblasts

Di Meo, S., S. Iossa, and P. Venditti (2017) Skeletal muscle insulin resistance: role of mitochondria and other ROS sources. J. Endocrinol. 233: R15–R42.

Article  CAS  Google Scholar 

Steinbacher, P. and P. Eckl (2015) Impact of oxidative stress on exercising skeletal muscle. Biomolecules 5: 356–377.

Article  CAS  Google Scholar 

Sambasivan, R. and S. Tajbakhsh (2015) Adult skeletal muscle stem cells. Results Probl. Cell Differ. 56: 191–213.

Article  CAS  Google Scholar 

Abrigo, J., F. Simon, D. Cabrera, C. Vilos, and C. Cabello-Verrugio (2019) Mitochondrial dysfunction in skeletal muscle pathologies. Curr. Protein Pept. Sci. 20: 536–546.

Article  CAS  Google Scholar 

Yu, Y., Y. Cui, L. J. Niedernhofer, and Y. Wang (2016) Occurrence, biological consequences, and human health relevance of oxidative stress-induced DNA damage. Chem. Res. Toxicol. 29: 2008–2039.

Article  CAS  Google Scholar 

Santa-Gonzalez, G. A., A. Gomez-Molina, M. Arcos-Burgos, J. N. Meyer, and M. Camargo (2016) Distinctive adaptive response to repeated exposure to hydrogen peroxide associated with upregulation of DNA repair genes and cell cycle arrest. Redox Biol. 9: 124–133.

Article  CAS  Google Scholar 

Bae, U. J., J. H. Ryu, B. H. Park, and E. J. Bae (2022) Angelica keiskei root extract attenuates bile duct ligation-induced liver injury in mice. J. Med. Food 25: 435–442.

Article  CAS  Google Scholar 

Noh, S., A. Go, D. B. Kim, M. Park, H. W. Jeon, and B. Kim (2020) Role of antioxidant natural products in management of infertility: a review of their medicinal potential. Antioxidants (Basel) 9: 957.

Article  CAS  Google Scholar 

Yoshioka, Y., Y. Samukawa, Y. Yamashita, and H. Ashida (2020) 4-Hydroxyderricin and xanthoangelol isolated from Angelica keiskei prevent dexamethasone-induced muscle loss. Food Funct. 11: 5498–5512.

Article  CAS  Google Scholar 

Kweon, M., H. Lee, C. Park, Y. H. Choi, and J. H. Ryu (2019) A chalcone from Ashitaba (Angelica keiskei) stimulates myoblast differentiation and inhibits dexamethasone-induced muscle atrophy. Nutrients 11: 2419.

Article  CAS  Google Scholar 

Kil, Y. S., S. T. Pham, E. K. Seo, and M. Jafari (2017) Angelica keiskei, an emerging medicinal herb with various bioactive constituents and biological activities. Arch. Pharm. Res. 40: 655–675.

Article  CAS  Google Scholar 

Caesar, L. K. and N. B. Cech (2016) A review of the medicinal uses and pharmacology of Ashitaba. Planta Med. 82: 1236–1245.

Article  CAS  Google Scholar 

Li, Y., T. Goto, R. Ikutani, S. Lin, N. Takahashi, H. Takahashi, H. F. Jheng, R. Yu, M. Taniguchi, K. Baba, S. Murakami, and T. Kawada (2016) Xanthoangelol and 4-hydroxyderrcin suppress obesity-induced inflammatory responses. Obesity (Silver Spring) 24: 2351–2360.

Article  CAS  Google Scholar 

Zhang, L., Y. Jiang, X. Pang, P. Hua, X. Gao, Q. Li, and Z. Li (2019) Simultaneous optimization of ultrasound-assisted extraction for flavonoids and antioxidant activity of Angelica keiskei using response surface methodology (RSM). Molecules 24: 3461.

Article  CAS  Google Scholar 

Ohkura, N., G. Atsumi, K. Ohnishi, K. Baba, and M. Taniguchi (2018) Possible antithrombotic effects of Angelica keiskei (Ashitaba). Pharmazie 73: 315–317.

CAS  Google Scholar 

Hagiwara, H., K. Nakata, H. Miyazaki, S. Maehashi, Y. Komiyama, R. Aida, S. Yoshida, D. Kokubu, K. Hagiwara, and K. Yoshida (2019) 4-Hydroxyderricin inhibits osteoclast formation and accelerates osteoblast differentiation. Cytotechnology 71: 15–22.

Article  CAS  Google Scholar 

Kim, A., J. W. Lim, H. Kim, and H. Kim (2016) Supplementation with Angelica keiskei inhibits expression of inflammatory mediators in the gastric mucosa of Helicobacter pylori-infected mice. Nutr. Res. 36: 488–497.

Article  CAS  Google Scholar 

Kokubu, D., R. Ooba, Y. Abe, H. Ishizaki, S. Yoshida, A. Asano, S. I. Kashiwabara, and H. Miyazaki (2019) Angelica keiskei (Ashitaba) powder and its functional compound xanthoangelol prevent heat stress-induced impairment in sperm density and quality in mouse testes. J. Reprod. Dev. 65: 139–146.

Article  CAS  Google Scholar 

Jenkins, T. and J. Gouge (2021) Nrf2 in cancer, detoxifying enzymes and cell death programs. Antioxidants (Basel) 10: 1030.

Article  CAS  Google Scholar 

Shaw, P. and A. Chattopadhyay (2020) Nrf2-ARE signaling in cellular protection: mechanism of action and the regulatory mechanisms. J. Cell. Physiol. 235: 3119–3130.

Article  CAS  Google Scholar 

Choi, Y. H. (2022) Tacrolimus induces apoptosis in leukemia Jurkat cells through inactivation of the reactive oxygen species-dependent phosphoinositide-3-kinase/Akt signaling pathway. Biotechnol. Bioprocess Eng. 27: 183–192.

Article  CAS  Google Scholar 

Park, C., H. Lee, S. Hong, I. M. N. Molagoda, J. W. Jeong, C. Y. Jin, G. Y. Kim, S. H. Choi, S. H. Hong, and Y. H. Choi (2021) Inhibition of lipopolysaccharide-induced inflammatory and oxidative responses by trans-cinnamaldehyde in C2C12 myoblasts. Int. J. Med. Sci. 18: 2480–2492.

Article  CAS  Google Scholar 

Olasehinde, T. A. and A. O. Olaniran (2022) Neurotoxicity of anthracene and benz[a]anthracene involves oxidative stress-induced neuronal damage, cholinergic dysfunction and disruption of monoaminergic and purinergic enzymes. Toxicol. Res. 38: 365–377.

Article  CAS  Google Scholar 

Sukjamnong, S., H. Chen, S. Saad, and R. Santiyanont (2022) Fimbristylis ovata and Artemisia vulgaris extracts inhibited AGE-mediated RAGE expression, ROS generation, and inflammation in THP-1 cells. Toxicol. Res. 38: 331–343.

Article  CAS  Google Scholar 

Lee, H., D. H. Kim, J. H. Kim, S. K. Park, J. W. Jeong, M. Y. Kim, S. H. Hong, S. K. Song, G. Y. Kim, J. W. Hyun, and Y. H. Choi (2021) Urban aerosol particulate matter promotes necrosis and autophagy via reactive oxygen species-mediated cellular disorders that are accompanied by cell cycle arrest in retinal pigment epithelial cells. Antioxidants (Basel) 10: 149.

Article  CAS  Google Scholar 

Mukherjee, S., J. P. Park, and J. W. Yun (2022) Carboxylesterase3 (Ces3) interacts with bone morphogenetic protein 11 and promotes differentiation of osteoblasts via Smad1/5/9 pathway. Biotechnol. Bioprocess Eng. 27: 1–16.

Article  CAS  Google Scholar 

Jo, H. G., C. Park, H. Lee, G. Y. Kim, Y. S. Keum, J. W. Hyun, T. K. Kwon, Y. H. Choi, and S. H. Hong (2021) Inhibition of oxidative stress induced-cytotoxicity by coptisine in V79-4 Chinese hamster lung fibroblasts through the induction of Nrf-2 mediated HO-1 expression. Genes Genomics 43: 17–31.

Article  CAS  Google Scholar 

Kopp, B., L. Khoury, and M. Audebert (2019) Validation of the γH2AX biomarker for genotoxicity assessment: a review. Arch. Toxicol. 93: 2103–2114.

Article  CAS  Google Scholar 

Rahmanian, N., M. Shokrzadeh, and M. Eskandani (2021) Recent advances in γH2AX biomarker-based genotoxicity assays: a marker of DNA damage and repair. DNA Repair (Amst.) 108: 103243.

Article  CAS  Google Scholar 

Tjahjono, E., D. R. Kirienko, and N. V. Kirienko (2022) The emergent role of mitochondrial surveillance in cellular health. Aging Cell 21: e13710.

Article  CAS  Google Scholar 

Kowalczyk, P., D. Sulejczak, P. Kleczkowska, I. Bukowska-Ośko, M. Kucia, M. Popiel, E. Wietrak, K. Kramkowski, K. Wrzosek, and K. Kaczyńska (2021) Mitochondrial oxidative stress-a causative factor and therapeutic target in many diseases. Int. J. Mol. Sci. 22: 13384.

Article  CAS  Google Scholar 

Yu, Z. Y., D. Ma, Z. C. He, P. Liu, J. Huang, Q. Fang, J. Y. Zhao, and J. S. Wang (2018) Heme oxygenase-1 protects bone marrow mesenchymal stem cells from iron overload through decreasing reactive oxygen species and promoting IL-10 generation. Exp. Cell Res. 362: 28–42.

Article  CAS  Google Scholar 

Mottin, M., L. K. Caesar, D. Brodsky, N. C. M. R. Mesquita, K. Z. de Oliveira, G. D. Noske, B. K. P. Sousa, P. R. P. S. Ramos, H. Jarmer, B. Loh, K. M. Zorn, D. H. Foil, P. M. Torres, R. V. C. Guido, G. Oliva, F. Scholle, S. Ekins, N. B. Cech, C. H. Andrade, and S. M. Laster (2022) Chalcones from Angelica keiskei (ashitaba) inhibit key Zika virus replication proteins. Bioorg. Chem. 120: 105649.

Article  CAS  Google Scholar 

Zhang, T., Q. Wang, M. Fredimoses, G. Gao, K. Wang, H. Chen, T. Wang, N. Oi, T. A. Zykova, K. Reddy, K. Yao, W. Ma, X. Chang, M. H. Lee, M. G. Rathore, A. M. Bode, H. Ashida, S. M. Lippman, and Z. Dong (2018) The ashitaba (Angelica keiskei) chalcones 4-hydroxyderricin and xanthoangelol suppress melanomagenesis by targeting BRAF and PI3K. Cancer Prev. Res. (Phila.) 11: 607–620.

Article  CAS  Google Scholar 

Pavyde, E., A. Usas, and R. Maciulaitis (2016) Regenerative pharmacology for the treatment of acute kidney injury: skeletal muscle stem/progenitor cells for renal regeneration? Pharmacol. Res. 113: 802–807.

Article  CAS  Google Scholar 

Salucci, S., S. Burattini, M. Battistelli, V. Baldassarri, M. C. Maltarello, and E. Falcieri (2012) Ultraviolet B (UVB) irradiation-induced apoptosis in various cell lineages in vitro. Int. J. Mol. Sci. 14: 532–546.

Article  Google Scholar 

Tiwari, S., R. K. Dewry, R. Srivastava, S. Nath, and T. K. Mohanty (2022) Targeted antioxidant delivery modulates mitochondrial functions, ameliorates oxidative stress and preserve sperm quality during cryopreservation. Theriogenology 179: 22–31.

Article  CAS  Google Scholar 

Urbani, A., E. Prosdocimi, A. Carrer, V. Checchetto, and I. Szabò (2021) Mitochondrial ion channels of the inner membrane and their regulation in cell death signaling. Front. Cell Dev. Biol. 8: 620081.

Article  Google Scholar 

Bock, F. J. and S. W. G. Tait (2020) Mitochondria as multifaceted regulators of cell death. Nat. Rev. Mol. Cell Biol. 21: 85–100.

Article  CAS  Google Scholar 

Sarwar, M. S., Y. X. Xia, Z. M. Liang, S. W. Tsang, and H. J. Zhang (2020) Mechanistic pathways and molecular targets of plant-derived anticancer ent-Kaurane diterpenes. Biomolecules 10: 144.

Article  CAS  Google Scholar 

Choi, Y. H. (2021) Trans-cinnamaldehyde protects C2C12 myoblasts from DNA damage, mitochondrial dysfunction and apoptosis caused by oxidative stress through inhibiting ROS production. Genes Genomics 43: 303–312.

Article  CAS 

留言 (0)

沒有登入
gif