Insights into the role of senescence in tumor dormancy: mechanisms and applications

Labonte, M. J., Bohanes, P., Zhang, W., Benhanim, L., Ning, Y., Wakatsuki, T., & David, P. (2012). Cancer dormancy: A model of early dissemination and late cancer recurrence. Clinical Cancer Research, 18(3), 645–654. https://doi.org/10.1158/1078-0432.CCR-11-2186

Article  Google Scholar 

Morgan, T. M., Lange, P. H., Porter, M. P., Lin, D. W., Ellis, W. J., Gallaher, I. S., & Vessella, R. L. (2009). Disseminated tumor cells in prostate cancer patients after radical prostatectomy and without evidence of disease predicts biochemical recurrence. Clinical Cancer Research, 15(2), 677–683. https://doi.org/10.1158/1078-0432.CCR-08-1754

Article  CAS  Google Scholar 

Janni, W., Vogl, F. D., Wiedswang, G., Synnestvedt, M., Fehm, T., Jückstock, J., & Naume, B. (2011). Persistence of disseminated tumor cells in the bone marrow of breast cancer patients predicts increased risk for relapse–A European pooled analysis. Clinical Cancer Research, 17(9), 2967–2976. https://doi.org/10.1158/1078-0432.CCR-10-2515

Article  Google Scholar 

Sosa, M. S., Bragado, P., & Aguirre-Ghiso, J. A. (2014). Mechanisms of disseminated cancer cell dormancy: An awakening field. Nature Reviews Cancer, 14(9), 611–622. https://doi.org/10.1038/nrc3793.Mechanisms

Article  CAS  Google Scholar 

Naumov, G. N., Folkman, J., & Straume, O. (2009). Tumor dormancy due to failure of angiogenesis: Role of the microenvironment. Clinical and Experimental Metastasis, 26(1), 51–60. https://doi.org/10.1007/S10585-008-9176-0

Article  Google Scholar 

Baxevanis, C. N., & Perez, S. A. (2015). Cancer dormancy: A regulatory role for endogenous immunity in establishing and maintaining the tumor dormant state. Vaccines, 3(3), 597–619. https://doi.org/10.3390/VACCINES3030597

Article  CAS  Google Scholar 

van Linde, M. E., Brahm, C. G., de Witt Hamer, P. C., Reijneveld, J. C., Bruynzeel, A. M. E., Vandertop, W. P., & Verheul, H. M. W. (2017). Treatment outcome of patients with recurrent glioblastoma multiforme: A retrospective multicenter analysis. Journal of Neuro-oncology, 135(1), 183–192. https://doi.org/10.1007/S11060-017-2564-Z

Article  Google Scholar 

Mari, A., Campi, R., Tellini, R., Gandaglia, G., Albisinni, S., Abufaraj, M., & Shariat, S. F. (2018). Patterns and predictors of recurrence after open radical cystectomy for bladder cancer: A comprehensive review of the literature. World Journal of Urology, 36(2), 157–170. https://doi.org/10.1007/S00345-017-2115-4

Article  Google Scholar 

Uramoto, H., & Tanaka, F. (2014). Recurrence after surgery in patients with NSCLC. Translational Lung Cancer Research, 3(4), 242–249. https://doi.org/10.3978/J.ISSN.2218-6751.2013.12.05

Article  Google Scholar 

Corrado, G., Salutari, V., Palluzzi, E., Distefano, M. G., Scambia, G., & Ferrandina, G. (2017). Optimizing treatment in recurrent epithelial ovarian cancer. Expert Review of Anticancer Therapy, 17(12), 1147–1158. https://doi.org/10.1080/14737140.2017.1398088

Article  CAS  Google Scholar 

Maio, M., Blank, C., Necchi, A., Di Giacomo, A. M., Ibrahim, R., Lahn, M., & Eggermont, A. M. M. (2021). Neoadjuvant immunotherapy is reshaping cancer management across multiple tumour types: The future is now! European Journal of Cancer, 152, 155–164. https://doi.org/10.1016/J.EJCA.2021.04.035

Article  CAS  Google Scholar 

Wang, B., & Demaria, M. (2021). The quest to define and target cellular senescence in cancer. Cancer Research, 81(24), 6087–6089. https://doi.org/10.1158/0008-5472.CAN-21-2032

Article  CAS  Google Scholar 

Hernandez-Segura, A., Nehme, J., & Demaria, M. (2018). Hallmarks of cellular senescence. Trends in Cell Biology, 28(6), 436–453. https://doi.org/10.1016/j.tcb.2018.02.001

Article  CAS  Google Scholar 

Stein, G. H., Drullinger, L. F., Soulard, A., & Dulić, V. (1999). Differential roles for cyclin-dependent kinase inhibitors p21 and p16 in the mechanisms of senescence and differentiation in human fibroblasts. Molecular and Cellular Biology, 19(3), 2109–2117. https://doi.org/10.1128/MCB.19.3.2109

Article  CAS  Google Scholar 

Erickson, S., Sangfelt, O., Heyman, M., Castro, J., Einhorn, S., & Grandér, D. (1998). Involvement of the Ink4 proteins p16 and p15 in T-lymphocyte senescence. Oncogene, 17(5), 595–602. https://doi.org/10.1038/sj.onc.1201965

Article  CAS  Google Scholar 

Alexander, K., & Hinds, P. W. (2001). Requirement for p27KIP1 in retinoblastoma protein-mediated senescence. Molecular and Cellular Biology, 21(11), 3616–3631. https://doi.org/10.1128/mcb.21.11.3616-3631.2001

Article  CAS  Google Scholar 

Dimri, G. P., Lee, X., Basile, G., Acosta, M., Scott, G., Roskelley, C., & Campisi, J. (1995). A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proceedings of the National Academy of Sciences, 92(20), 9363–7. https://doi.org/10.1073/pnas.92.20.9363

Article  CAS  Google Scholar 

Nishio, K., Inoue, A., Qiao, S., Kondo, H., & Mimura, A. (2001). Senescence and cytoskeleton: Overproduction of vimentin induces senescent-like morphology in human fibroblasts. Histochemistry and Cell Biology, 116(4), 321–327. https://doi.org/10.1007/s004180100325

Article  CAS  Google Scholar 

Zhang, R., Poustovoitov, M. V., Ye, X., Santos, H. A., Chen, W., Daganzo, S. M., & Adams, P. D. (2005). Formation of macroH2A-containing senescence-associated heterochromatin foci and senescence driven by ASF1a and HIRA. Developmental Cell, 8(1), 19–30. https://doi.org/10.1016/j.devcel.2004.10.019

Article  CAS  Google Scholar 

Chandra, T., Ewels, P. A., Schoenfelder, S., Furlan-Magaril, M., Wingett, S. W., Kirschner, K., & Reik, W. (2015). Global reorganization of the nuclear landscape in senescent cells. Cell Reports, 10(4), 471–483. https://doi.org/10.1016/j.celrep.2014.12.055

Article  CAS  Google Scholar 

Freund, A., Laberge, R.-M.R.M., Demaria, M., & Campisi, J. (2012). Lamin B1 loss is a senescence-associated biomarker. Molecular Biology of the Cell, 23(11), 2066–2075. https://doi.org/10.1091/mbc.E11-10-0884

Article  CAS  Google Scholar 

Coppé, J.-P., Desprez, P.-Y., Krtolica, A., & Campisi, J. (2010). The senescence-associated secretory phenotype: The dark side of tumor suppression. Annual Review of Pathology, 5, 99–118. https://doi.org/10.1146/annurev-pathol-121808-102144

Article  CAS  Google Scholar 

Hernandez-Segura, A., de Jong, T. V., Melov, S., Guryev, V., Campisi, J., & Demaria, M. (2017). Unmasking transcriptional heterogeneity in senescent cells. Current Biology, 27(17), 2652–2660. https://doi.org/10.1016/j.cub.2017.07.033

Article  CAS  Google Scholar 

Shay, J. W., & Wright, W. E. (2005). Senescence and immortalization: Role of telomeres and telomerase. Carcinogenesis, 26(5), 867–874. https://doi.org/10.1093/carcin/bgh296

Article  CAS  Google Scholar 

Serrano, M., Lin, A. W., McCurrach, M. E., Beach, D., & Lowe, S. W. (1997). Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Cell, 88(5), 593–602. https://doi.org/10.1016/S0092-8674(00)81902-9

Article  CAS  Google Scholar 

Bertram, C., & Hass, R. (2008). Cellular responses to reactive oxygen species-induced DNA damage and aging. Biological Chemistry. https://doi.org/10.1515/BC.2008.031

Article  Google Scholar 

Chang, B.-D., Swift, M. E., Shen, M., Fang, J., Broude, E. V., & Roninson, I. B. (2002). Molecular determinants of terminal growth arrest induced in tumor cells by a chemotherapeutic agent. Proceedings of the National Academy of Sciences, 99(1), 389–394. https://doi.org/10.1073/pnas.012602599

Article  CAS  Google Scholar 

Fumagalli, M., & Fagagna, F. D. (2009). SASPense and DDRama in cancer and ageing. Nature Publishing Group, 11(8), 921–923. https://doi.org/10.1038/ncb0809-921

Article  CAS  Google Scholar 

Hewitt, G., Jurk, D., Marques, F. D. M., Correia-Melo, C., Hardy, T., Gackowska, A., & Passos, J. F. (2012). Telomeres are favoured targets of a persistent DNA damage response in ageing and stress-induced senescence. Nature communications, 3, 708. https://doi.org/10.1038/NCOMMS1708

Article  Google Scholar 

Di Micco, R., Fumagalli, M., Cicalese, A., Piccinin, S., Gasparini, P., Luise, C., & Di D’AddaFagagna, F. (2006). Oncogene-induced senescence is a DNA damage response triggered by DNA hyper-replication. Nature, 444(7119), 638–642. https://doi.org/10.1038/nature05327

Article  CAS  Google Scholar 

Mallette, F. A., Gaumont-Leclerc, M. F., & Ferbeyre, G. (2007). The DNA damage signaling pathway is a critical mediator of oncogene-induced senescence. Genes and Development, 21(1), 43–48. https://doi.org/10.1101/gad.1487307

Article  CAS  Google Scholar 

Robles, S. J., & Adami, G. R. (1998). Agents that cause DNA double strand breaks lead to p16INK4a enrichment and the premature senescence of normal fibrolasts. Oncogene, 16(9), 1113–1123. https://doi.org/10.1038/sj.onc.1201862

Article  CAS  Google Scholar 

Rodier, F., Coppé, J., Patil, C. K., Hoeijmakers, W. A. M., Muñoz, D. P., Raza, S. R., & Campisi, J. (2009). Persistent DNA damage signalling triggers senescence- associated inflammatory cytokine secretion. Nature Cell Biology, 11(8), 973–979. https://doi.org/10.1038/ncb1909

Article  CAS  Google Scholar 

Jost, T., Heinzerling, L., Fietkau, R., Hecht, M., & Distel, L. V. (2021). Palbociclib induces senescence in melanoma and breast cancer cells and leads to additive growth arrest in combination with irradiation. Frontiers in Oncology, 11, 740002. https://doi.org/10.3389/FONC.2021.740002

Article  Google Scholar 

Malaquin, N., Vancayseele, A., Gilbert, S., Antenor-Habazac, L., Olivier, M. A., Ait Ali Brahem, Z., Rodier, F. (2020). DNA damage- but not enzalutamide-induced senescence in prostate cancer promotes senolytic Bcl-xL inhibitor sensitivity. Cells, 9(7). https://doi.org/10.3390/cells9071593

Wang, L., Leite de Oliveira, R., Wang, C., FernandesNeto, J. M., Mainardi, S., Evers, B., & Bernards, R. (2017). High-throughput functional genetic and compound screens identify targets for senescence induction in cancer. Cell Reports, 21(3), 773–783. https://doi.org/10.1016/j.celrep.2017.09.085

Article  CAS  Google Scholar 

Baek, K. H., & Ryeom, S. (2017). Detection of oncogene-induced senescence in vivo. Methods in Molecular Biology, 1534, 185–198. https://doi.org/10.1007/978-1-4939-6670-7_18

Article  CAS  Google Scholar 

Collado, M., Gil, J., Efeyan, A., Guerra, C., Schuhmacher, A. J., Barradas, M., & Serrano, M. (2005). Tumour biology: Senescence in premalignant tumours. Nature, 436(7051), 642. https://doi.org/10.1038/436642a

Article  CAS  Google Scholar 

Cotarelo, C. L., Schad, A., Kirkpatrick, C. J., Sleeman, J. P., Springer, E., Schmidt, M., & Thaler, S. (2016). Detection of cellular senescence within human invasive breast carcinomas distinguishes different breast tumor subtypes. Oncotarget, 7(46), 74846–748597. https://doi.org/10.18632/oncotarget.12432

Article  Google Scholar 

Park, M. H., Choi, J. E., Kim, J. R., & Bae, Y. K. (2021). Immunohistochemical expressions of senescence-associated secretory phenotype and its association with immune microenvironments and clinicopathological factors in invasive breast cancer. Pathology Oncology Research, 27, 1609795. https://doi.org/10.3389/PORE.2021.1609795

Article  Google Scholar 

Poele, R. H., Okorokov, A. L., Jardine, L., Cummings, J., Joel, S. P., te Poele, R. H., & Joel, S. P. (2002). DNA damage is able to induce senescence in tumor cells in vitro and in vivo. Cancer Research, 62(6), 1876–1883.

留言 (0)

沒有登入
gif