Towards a better understanding of diabetes mellitus using organoid models

Nauck, M. A., Wefers, J. & Meier, J. J. Treatment of type 2 diabetes: challenges, hopes, and anticipated successes. Lancet Diabetes Endocrinol. 9, 525–544 (2021).

Article  CAS  Google Scholar 

Huch, M., Knoblich, J. A., Lutolf, M. P. & Martinez-Arias, A. The hope and the hype of organoid research. Development 144, 938–941 (2017). This comprehensive review on organoids delves into the history and philosophy of the organoid field.

Article  CAS  Google Scholar 

Marsee, A. et al. Building consensus on definition and nomenclature of hepatic, pancreatic, and biliary organoids. Cell Stem Cell 28, 816–832 (2021).

Article  CAS  Google Scholar 

Tsakmaki, A., Fonseca Pedro, P. & Bewick, G. A. Diabetes through a 3D lens: organoid models. Diabetologia 63, 1093–1102 (2020).

Article  Google Scholar 

Hopcroft, D. W., Mason, D. R. & Scott, R. S. Insulin secretion from perifused rat pancreatic pseudoislets. Vitr. Cell. Dev. Biol. 21, 421–427 (1985).

Article  CAS  Google Scholar 

Halban, P. A., Powers, S. L., George, K. L. & Bonner-Weir, S. Spontaneous reassociation of dispersed adult rat pancreatic islet cells into aggregates with three-dimensional architecture typical of native islets. Diabetes 36, 783–790 (1987).

Article  CAS  Google Scholar 

Hilderink, J. et al. Controlled aggregation of primary human pancreatic islet cells leads to glucose-responsive pseudoislets comparable to native islets. J. Cell. Mol. Med. 19, 1836–1846 (2015).

Article  CAS  Google Scholar 

Velazco-Cruz, L., Goedegebuure, M. M. & Millman, J. R. Advances toward engineering functionally mature human pluripotent stem cell-derived β cells. Front. Bioeng. Biotechnol. 8, 786 (2020).

Article  Google Scholar 

Brusko, T. M., Russ, H. A. & Stabler, C. L. Strategies for durable β cell replacement in type 1 diabetes. Science 373, 516–522 (2021).

Article  CAS  Google Scholar 

Frum, T. & Spence, J. R. hPSC-derived organoids: models of human development and disease. J. Mol. Med. 99, 463–473 (2021).

Article  Google Scholar 

Beltrand, J. et al. Neonatal diabetes mellitus. Front. Pediatr. 8, 602 (2020).

Article  Google Scholar 

O’Hara, S. E., Gembus, K. M. & Nicholas, L. M. Understanding the long-lasting effects of fetal nutrient restriction versus exposure to an obesogenic diet on islet-cell mass and function. Metabolites 11, 514 (2021).

Article  Google Scholar 

Larsen, H. L. & Grapin-Botton, A. The molecular and morphogenetic basis of pancreas organogenesis. Semin. Cell Dev. Biol. 66, 51–68 (2017).

Article  CAS  Google Scholar 

Petersen, M. B. K., Gonçalves, C. A. C., Kim, Y. H. & Grapin-Botton, A. Recapitulating and deciphering human pancreas development from human pluripotent stem cells in a dish. Curr. Top. Dev. Biol. 129, 143–190 (2018).

Article  CAS  Google Scholar 

Sugiyama, T. et al. Reconstituting pancreas development from purified progenitor cells reveals genes essential for islet differentiation. Proc. Natl Acad. Sci. USA 110, 12691–12696 (2013).

Article  CAS  Google Scholar 

Greggio, C. et al. Artificial three-dimensional niches deconstruct pancreas development in vitro. Development 140, 4452–4462 (2013). This article reports on the first pancreas organoid models, which remain the most complex organoid system in terms of architecture and cell diversity.

Article  CAS  Google Scholar 

Bonfanti, P. et al. Ex vivo expansion and differentiation of human and mouse fetal pancreatic progenitors are modulated by epidermal growth factor. Stem Cell Dev. 24, 1766–1778 (2015).

Article  CAS  Google Scholar 

Bakhti, M. et al. Establishment of a high-resolution 3D modeling system for studying pancreatic epithelial cell biology in vitro. Mol. Metab. 30, 16–29 (2019).

Article  CAS  Google Scholar 

Scavuzzo, M. A., Yang, D. & Borowiak, M. Organotypic pancreatoids with native mesenchyme develop insulin producing endocrine cells. Sci. Rep. 7, 10810 (2017).

Article  Google Scholar 

Gonçalves, C. A. et al. A 3D system to model human pancreas development and its reference single-cell transcriptome atlas identify signaling pathways required for progenitor expansion. Nat. Commun. 12, 3144 (2021).

Article  Google Scholar 

Loomans, C. J. M. et al. Expansion of adult human pancreatic tissue yields organoids harboring progenitor cells with endocrine differentiation potential. Stem Cell Rep. 10, 712–724 (2018).

Article  CAS  Google Scholar 

Dahl-Jensen, S. B. et al. Deconstructing the principles of ductal network formation in the pancreas. PLoS Biol. 16, e2002842 (2018).

Article  Google Scholar 

Scavuzzo, M. A., Teaw, J., Yang, D. & Borowiak, M. Generation of scaffold-free, three-dimensional insulin expressing pancreatoids from mouse pancreatic progenitors in vitro. J. Vis. Exp. 2018, e57599 (2018).

Google Scholar 

Nair, G. G., Tzanakakis, E. S. & Hebrok, M. Emerging routes to the generation of functional β-cells for diabetes mellitus cell therapy. Nat. Rev. Endocrinol. 16, 506–518 (2020).

Article  Google Scholar 

Rezania, A. et al. Reversal of diabetes with insulin-producing cells derived in vitro from human pluripotent stem cells. Nat. Biotechnol. 32, 1121–1133 (2014).

Article  CAS  Google Scholar 

Nostro, M. C. et al. Stage-specific signaling through TGFβ family members and WNT regulates patterning and pancreatic specification of human pluripotent stem cells. Development 138, 861–871 (2011).

Article  CAS  Google Scholar 

Pagliuca, F. W. et al. Generation of functional human pancreatic β cells in vitro. Cell 159, 428–439 (2014).

Article  CAS  Google Scholar 

Russ, H. A. et al. Controlled induction of human pancreatic progenitors produces functional beta‐like cells in vitro. EMBO J. 34, 1759–1772 (2015).

Article  CAS  Google Scholar 

Nair, G. G. et al. Recapitulating endocrine cell clustering in culture promotes maturation of human stem-cell-derived β cells. Nat. Cell Biol. 21, 263–274 (2019). The innovation of this article consisted in sorting endocrine cells produced from PSCs to form islets of enhanced functionality compared with islets that contain undifferentiated progenitors.

Article  CAS  Google Scholar 

Velazco-Cruz, L. et al. Acquisition of dynamic function in human stem cell-derived β cells. Stem Cell Rep. 12, 351–365 (2019).

Article  CAS  Google Scholar 

Toyoda, T. et al. Cell aggregation optimizes the differentiation of human ESCs and iPSCs into pancreatic bud-like progenitor cells. Stem Cell Res. 14, 185–197 (2015).

Article  CAS  Google Scholar 

Jiang, J. et al. Generation of insulin‐producing islet‐like clusters from human embryonic. Stem Cell. Stem Cells 25, 1940–1953 (2007).

Article  CAS  Google Scholar 

Zhu, S. et al. Human pancreatic beta-like cells converted from fibroblasts. Nat. Commun. 7, 10080 (2016).

Article  CAS  Google Scholar 

Balboa, D. et al. Functional, metabolic and transcriptional maturation of human pancreatic islets derived from stem cells. Nat. Biotechnol. 40, 1042–1055 (2022). The current highest quality assessment standards for benchmarking in vitro-produced islets.

Article  CAS  Google Scholar 

Hohwieler, M. et al. Human pluripotent stem cell-derived acinar/ductal organoids generate human pancreas upon orthotopic transplantation and allow disease modelling. Gut 66, 473–486 (2017).

Article  CAS  Google Scholar 

Wesolowska-Andersen, A. et al. Analysis of differentiation protocols defines a common pancreatic progenitor molecular signature and guides refinement of endocrine differentiation. Stem Cell Rep. 14, 138–153 (2020).

Article  Google Scholar 

Wang, X. & Ye, K. Three-dimensional differentiation of embryonic stem cells into islet-like insulin-producing clusters. Tissue Eng. Part A 15, 1941–1952 (2009).

Article  CAS  Google Scholar 

Saito, H., Takeuchi, M., Chida, K. & Miyajima, A. Generation of glucose-responsive functional islets with a three-dimensional structure from mouse fetal pancreatic cells and iPS cells in vitro. PLoS ONE 6, e28209 (2011).

Article  CAS  Google Scholar 

Braverman-Gross, C. & Benvenisty, N. Modeling maturity onset diabetes of the young in pluripotent stem cells: challenges and achievements. Front. Endocrinol. 12, 20 (2021).

Article  Google Scholar 

Riddle, M. C. et al. Monogenic diabetes: from genetic insights to population-based precision in care. Reflections from a diabetes care editors’ expert forum. Diabetes Care 43, 3117–3128 (2020).

Article  Google Scholar 

Balboa, D., Iworima, D. G. & Kieffer, T. J. Human pluripotent stem cells to model islet defects in diabetes. Front. Endocrinol. 12, 149 (2021).

Article  Google Scholar 

Abdelalim, E. M. Modeling different types of diabetes using human pluripotent stem cells. Cell. Mol. Life Sci. 78, 2459–2483 (2021).

Article  CAS  Google Scholar 

Ma, S. et al. β Cell replacement after gene editing of a neonatal diabetes-causing mutation at the insulin locus. Stem Cell Rep. 11, 1407–1415 (2018).

Article  CAS  Google Scholar 

Balboa, D. et al. Insulin mutations impair beta-cell development in a patient-derived iPSC model of neonatal diabetes. Elife 7, e38519 (2018).

Article  Google Scholar 

Panova, A. V. et al. Aberrant splicing of INS impairs beta-cell differentiation and proliferation by ER stress in the isogenic iPSC model of neonatal diabetes. Int. J. Mol. Sci. 23, 8824 (2022).

Article  CAS  Google Scholar 

De Franco, E. et al. YIPF5 mutations cause neonatal diabetes and microcephaly through endoplasmic reticulum stress. J. Clin. Invest. 130, 6338–6353 (2020).

Article  Google Scholar 

Saarimäki-Vire, J. et al. An activating STAT3 mutation causes neonatal diabetes through premature induction of pancreatic differentiation. Cell Rep. 19, 281–294 (2017).

Article 

留言 (0)

沒有登入
gif