Genetics of Intervertebral Disc Degeneration

Hoy D, Bain C, Williams G, March L, Brooks P, Blyth F, Woolf A, Vos T, Buchbinder R. A systematic review of the global prevalence of low back pain. Arthritis Rheum. 2012;64(6):2028–37. https://doi.org/10.1002/art.34347.

Article  Google Scholar 

Dagenais S, Caro J, Haldeman S. A systematic review of low back pain cost of illness studies in the United States and internationally. Spine J. 2008;8(1):8–20. https://doi.org/10.1016/j.spinee.2007.10.005.

Article  Google Scholar 

Oichi T, Taniguchi Y, Oshima Y, Tanaka S, Saito T. Pathomechanism of intervertebral disc degeneration. JOR Spine. 2020;3(1):e1076. https://doi.org/10.1002/jsp2.1076.

Article  Google Scholar 

Manchikanti L, Singh V, Falco FJ, Benyamin RM, Hirsch JA. Epidemiology of low back pain in adults. Neuromodulation. 2014;17(Suppl 2):3–10. https://doi.org/10.1111/ner.12018.

Article  Google Scholar 

Torgerson WR, Dotter WE. Comparative roentgenographic study of the asymptomatic and symptomatic lumbar spine. J Bone Joint Surg Am. 1976;58(6):850–3.

Article  CAS  Google Scholar 

Roberts S, Evans H, Trivedi J, Menage J. Histology and pathology of the human intervertebral disc. J Bone Joint Surg Am. 2006;88(Suppl 2):10–4. https://doi.org/10.2106/JBJS.F.00019.

Article  Google Scholar 

An HS, Masuda K, Inoue N. Intervertebral disc degeneration: biological and biomechanical factors. J Orthop Sci. 2006;11(5):541–52. https://doi.org/10.1007/s00776-006-1055-4.

Article  Google Scholar 

Zhang S, Liu W, Chen S, Wang B, Wang P, Hu B, Lv X, Shao Z. Extracellular matrix in intervertebral disc: basic and translational implications. Cell Tissue Res. 2022;390:1–22. https://doi.org/10.1007/s00441-022-03662-5.

Article  Google Scholar 

Battie MC, Videman T, Gibbons LE, Fisher LD, Manninen H, Gill K. 1995 Volvo Award in clinical sciences. Determinants of lumbar disc degeneration. A study relating lifetime exposures and magnetic resonance imaging findings in identical twins. Spine (Phila Pa 1976). 1995;20(24):2601–12.

Article  CAS  Google Scholar 

• Trefilova VV, Shnayder NA, Petrova MM, Kaskaeva DS, Tutynina OV, Petrov KV, et al. The Role of Polymorphisms in Collagen-Encoding Genes in Intervertebral Disc Degeneration. Biomolecules. 2021;11(9) https://doi.org/10.3390/biom11091279. This paper is a comprehensive exploration of polymorphisms in structural collagen genes to test for association with disc degeneration. This study provides an excellent overview of the role of matrix structural gene contribution to the genetic etiology of disc degeneration.

Dowdell J, Erwin M, Choma T, Vaccaro A, Iatridis J, Cho SK. Intervertebral Disk Degeneration and Repair. Neurosurgery. 2017;80(3S):S46–54. https://doi.org/10.1093/neuros/nyw078.

Article  Google Scholar 

• Cherif H, Mannarino M, Pacis AS, Ragoussis J, Rabau O, Ouellet JA, et al. Single-Cell RNA-Seq Analysis of Cells from Degenerating and Non-Degenerating Intervertebral Discs from the Same Individual Reveals New Biomarkers for Intervertebral Disc Degeneration. Int J Mol Sci. 2022;23(7) https://doi.org/10.3390/ijms23073993. In this study, the authors explored gene expression changes in the degenerating disc. They identify several pathways perturbated by this disease state.

Boos N, Weissbach S, Rohrbach H, Weiler C, Spratt KF, Nerlich AG. Classification of age-related changes in lumbar intervertebral discs: 2002 Volvo Award in basic science. Spine (Phila Pa 1976). 2002;27(23):2631–44. https://doi.org/10.1097/00007632-200212010-00002.

Article  Google Scholar 

Bhattacharjee M, Miot S, Gorecka A, Singha K, Loparic M, Dickinson S, das A, Bhavesh NS, Ray AR, Martin I, Ghosh S. Oriented lamellar silk fibrous scaffolds to drive cartilage matrix orientation: towards annulus fibrosus tissue engineering. Acta Biomater. 2012;8(9):3313–25. https://doi.org/10.1016/j.actbio.2012.05.023.

Article  CAS  Google Scholar 

Galbusera F, van Rijsbergen M, Ito K, Huyghe JM, Brayda-Bruno M, Wilke HJ. Ageing and degenerative changes of the intervertebral disc and their impact on spinal flexibility. Eur Spine J. 2014;23(Suppl 3):S324–32. https://doi.org/10.1007/s00586-014-3203-4.

Article  Google Scholar 

Pezowicz CA, Robertson PA, Broom ND. Intralamellar relationships within the collagenous architecture of the annulus fibrosus imaged in its fully hydrated state. J Anat. 2005;207(4):299–312. https://doi.org/10.1111/j.1469-7580.2005.00467.x.

Article  Google Scholar 

Nguyen C, Poiraudeau S, Rannou F. Vertebral subchondral bone. Osteoporos Int. 2012;23(Suppl 8):S857–60. https://doi.org/10.1007/s00198-012-2164-x.

Article  Google Scholar 

Wang Y, Battie MC, Boyd SK, Videman T. The osseous endplates in lumbar vertebrae: thickness, bone mineral density and their associations with age and disk degeneration. Bone. 2011;48(4):804–9. https://doi.org/10.1016/j.bone.2010.12.005.

Article  Google Scholar 

Nosikova YS, Santerre JP, Grynpas M, Gibson G, Kandel RA. Characterization of the annulus fibrosus-vertebral body interface: identification of new structural features. J Anat. 2012;221(6):577–89. https://doi.org/10.1111/j.1469-7580.2012.01537.x.

Article  CAS  Google Scholar 

Martin JT, Wesorick B, Oldweiler AB, Kosinski AS, Goode AP, DeFrate LE. In vivo fluid transport in human intervertebral discs varies by spinal level and disc region. JOR Spine. 2022;5(2):e1199. https://doi.org/10.1002/jsp2.1199.

Article  CAS  Google Scholar 

Urban JP, Smith S, Fairbank JC. Nutrition of the intervertebral disc. Spine (Phila Pa 1976). 2004;29(23):2700–9. https://doi.org/10.1097/01.brs.0000146499.97948.52.

Article  Google Scholar 

Wu Y, Loaiza J, Banerji R, Blouin O, Morgan E. Structure-function relationships of the human vertebral endplate. JOR Spine. 2021;4(3):e1170. https://doi.org/10.1002/jsp2.1170.

Article  CAS  Google Scholar 

Horner HA, Urban JP. 2001 Volvo Award Winner in Basic Science Studies: Effect of nutrient supply on the viability of cells from the nucleus pulposus of the intervertebral disc. Spine (Phila Pa 1976). 2001;26(23):2543–9. https://doi.org/10.1097/00007632-200112010-00006.

Article  CAS  Google Scholar 

Videman T, Battie MC, Gill K, Manninen H, Gibbons LE, Fisher LD. Magnetic resonance imaging findings and their relationships in the thoracic and lumbar spine. Insights into the etiopathogenesis of spinal degeneration. Spine (Phila Pa 1976). 1995;20(8):928–35. https://doi.org/10.1097/00007632-199504150-00009.

Article  CAS  Google Scholar 

Rodriguez AG, Rodriguez-Soto AE, Burghardt AJ, Berven S, Majumdar S, Lotz JC. Morphology of the human vertebral endplate. J Orthop Res. 2012;30(2):280–7. https://doi.org/10.1002/jor.21513.

Article  Google Scholar 

Benneker LM, Heini PF, Alini M, Anderson SE, Ito K. 2004 Young Investigator Award Winner: vertebral endplate marrow contact channel occlusions and intervertebral disc degeneration. Spine (Phila Pa 1976). 2005;30(2):167–73. https://doi.org/10.1097/01.brs.0000150833.93248.09.

Article  Google Scholar 

Roughley PJ. Biology of intervertebral disc aging and degeneration: involvement of the extracellular matrix. Spine (Phila Pa 1976). 2004;29(23):2691–9. https://doi.org/10.1097/01.brs.0000146101.53784.b1.

Article  Google Scholar 

Buckwalter JA, Roughley PJ, Rosenberg LC. Age-related changes in cartilage proteoglycans: quantitative electron microscopic studies. Microsc Res Tech. 1994;28(5):398–408. https://doi.org/10.1002/jemt.1070280506.

Article  CAS  Google Scholar 

Duance VC, Crean JK, Sims TJ, Avery N, Smith S, Menage J, et al. Changes in collagen cross-linking in degenerative disc disease and scoliosis. Spine (Phila Pa 1976). 1998;23(23):2545–51. https://doi.org/10.1097/00007632-199812010-00009.

Article  CAS  Google Scholar 

Nathan M, Pope MH, Grobler LJ. Osteophyte formation in the vertebral column: a review of the etiologic factors--Part II. Contemp Orthop. 1994;29(2):113–9.

CAS  Google Scholar 

Matsui H, Kanamori M, Ishihara H, Yudoh K, Naruse Y, Tsuji H. Familial predisposition for lumbar degenerative disc disease. A case-control study. Spine (Phila Pa 1976). 1998;23(9):1029–34. https://doi.org/10.1097/00007632-199805010-00013.

Article  CAS  Google Scholar 

Matsui H, Terahata N, Tsuji H, Hirano N, Naruse Y. Familial predisposition and clustering for juvenile lumbar disc herniation. Spine (Phila Pa 1976). 1992;17(11):1323–8. https://doi.org/10.1097/00007632-199211000-00011.

Article  CAS  Google Scholar 

Varlotta GP, Brown MD, Kelsey JL, Golden AL. Familial predisposition for herniation of a lumbar disc in patients who are less than twenty-one years old. J Bone Joint Surg Am. 1991;73(1):124–8.

Article  CAS  Google Scholar 

Sambrook PN, MacGregor AJ, Spector TD. Genetic influences on cervical and lumbar disc degeneration: a magnetic resonance imaging study in twins. Arthritis Rheum. 1999;42(2):366–72. https://doi.org/10.1002/1529-0131(199902)42:2<366::AID-ANR20>3.0.CO;2-6.

Article  CAS  Google Scholar 

Videman T, Battie MC, Ripatti S, Gill K, Manninen H, Kaprio J. Determinants of the progression in lumbar degeneration: a 5-year follow-up study of adult male monozygotic twins. Spine (Phila Pa 1976). 2006;31(6):671–8. https://doi.org/10.1097/01.brs.0000202558.86309.ea.

Article  Google Scholar 

Williams FM, Popham M, Sambrook PN, Jones AF, Spector TD, MacGregor AJ. Progression of lumbar disc degeneration over a decade: a heritability study. Ann Rheum Dis. 2011;70(7):1203–7. https://doi.org/10.1136/ard.2010.146001.

Article  Google Scholar 

Livshits G, Ermakov S, Popham M, Macgregor AJ, Sambrook PN, Spector TD, et al. Evidence that bone mineral density plays a role in degenerative disc disease: the UK Twin Spine study. Ann Rheum Dis. 2010;69(12):2102–6. https://doi.org/10.1136/ard.2010.131441.

Article  Google Scholar 

Battie MC, Videman T, Levalahti E, Gill K, Kaprio J. Heritability of low back pain and the role of disc degeneration. Pain. 2007;131(3):272–80. https://doi.org/10.1016/j.pain.2007.01.010.

Article  Google Scholar 

Livshits G, Popham M, Malkin I, Sambrook PN, Macgregor AJ, Spector T, et al. Lumbar disc degeneration and genetic factors are the main risk factors for low back pain in women: the UK Twin Spine Study. Ann Rheum Dis. 2011;70(10):1740–5. https://doi.org/10.1136/ard.2010.137836.

Article  Google Scholar 

Malis C, Rasmussen EL, Poulsen P, Petersen I, Christensen K, Beck-Nielsen H, Astrup A, Vaag AA. Total and regional fat distribution is strongly influenced by genetic factors in young and elderly twins. Obes Res. 2005;13(12):2139–45. https://doi.org/10.1038/oby.2005.265.

Article  Google Scholar 

Liuke M, Solovieva S, Lamminen A, Luoma K, Leino-Arjas P, Luukkonen R, Riihimäki H. Disc degeneration of the lumbar spine in relation to overweight. Int J Obes (Lond). 2005;29(8):903–8. https://doi.org/10.1038/sj.ijo.0802974.

Article  CAS  Google Scholar 

Urquhart DM, Kurniadi I, Triangto K, Wang Y, Wluka AE, O'Sullivan R, et al. Obesity is associated with reduced disc height in the lumbar spine but not at the lumbosacral junction. Spine (Phila Pa 1976). 2014;39(16):E962–6. https://doi.org/10.1097/BRS.0000000000000411.

Article  Google Scholar 

Zhou X, Cheung CL, Karasugi T, Karppinen J, Samartzis D, Hsu YH, Mak TSH, Song YQ, Chiba K, Kawaguchi Y, Li Y, Chan D, Cheung KMC, Ikegawa S, Cheah KSE, Sham PC. Trans-Ethnic Polygenic Analysis Supports Genetic Overlaps of Lumbar Disc Degeneration With Height, Body Mass Index, and Bone Mineral Density. Front Genet. 2018;9:267. https://doi.org/10.3389/fgene.2018.00267.

Article  CAS  Google Scholar 

Bjornsdottir G, Benonisdottir S, Sveinbjornsson G, Styrkarsdottir U, Thorleifsson G, Walters GB, et al. Sequence variant at 8q24.21 associates with sciatica caused by lumbar disc herniation. Nat Commun. 2017;8:14265. https://doi.org/10.1038/ncomms14265.

Article 

留言 (0)

沒有登入
gif