The role of autophagy in viral infections

Doria A, Gatto M, Punzi L. Autophagy in Human Health and Disease. N Engl J Med. 2013. https://doi.org/10.1056/NEJMc1303158.

Article  Google Scholar 

Walker PJ, Siddell SG, Lefkowitz EJ, Mushegian AR, Dempsey DM, Dutilh BE, et al. Changes to virus taxonomy and the International Code of Virus Classification and Nomenclature ratified by the International Committee on Taxonomy of Viruses (2019). Arch Virol. 2019. https://doi.org/10.1007/s00705-019-04306-w.

Article  Google Scholar 

Levine B, Mizushima N, Virgin HW. Autophagy in immunity and inflammation. Nature. 2011. https://doi.org/10.1038/nature09782.

Article  Google Scholar 

Shibutani ST, Yoshimori T. A current perspective of autophagosome biogenesis. Cell Res. 2014. https://doi.org/10.1038/cr.2013.159.

Article  Google Scholar 

Jung CH, Jun CB, Ro SH, Kim YM, Otto NM, Cao J, et al. ULK-Atg13-FIP200 complexes mediate mTOR signaling to the autophagy machinery. Mol Biol Cell. 2009. https://doi.org/10.1091/mbc.E08-12-1249.

Article  Google Scholar 

Yue Z, Zhong Y. From a global view to focused examination: understanding cellular function of lipid kinase VPS34-Beclin 1 complex in autophagy. J Mol Cell Biol. 2010. https://doi.org/10.1093/jmcb/mjq028.

Article  Google Scholar 

Axe EL, Walker SA, Manifava M, Chandra P, Roderick HL, Habermann A, et al. Autophagosome formation from membrane compartments enriched in phosphatidylinositol 3-phosphate and dynamically connected to the endoplasmic reticulum. J Cell Biol. 2008. https://doi.org/10.1083/jcb.200803137.

Article  Google Scholar 

Nakatogawa H, Suzuki K, Kamada Y, Ohsumi Y. Dynamics and diversity in autophagy mechanisms: lessons from yeast. Nat Rev Mol Cell Biol. 2009. https://doi.org/10.1038/nrm2708.

Article  Google Scholar 

Xie Z, Nair U, Klionsky DJ. Atg8 controls phagophore expansion during autophagosome formation. Mol Biol Cell. 2008. https://doi.org/10.1091/mbc.E07-12-1292.

Article  Google Scholar 

Suzuki H, Osawa T, Fujioka Y, Noda NN. Structural biology of the core autophagy machinery. Curr Opin Struct Biol. 2017. https://doi.org/10.1016/j.sbi.2016.09.010.

Article  Google Scholar 

Fader CM, Sanchez DG, Mestre MB, Colombo MI. TI-VAMP/VAMP7 and VAMP3/cellubrevin: two v-SNARE proteins involved in specific steps of the autophagy/multivesicular body pathways. Biochim Biophys Acta. 2009. https://doi.org/10.1016/j.bbamcr.2009.09.011.

Article  Google Scholar 

Furuta N, Fujita N, Noda T, Yoshimori T, Amano A. Combinational soluble N-ethylmaleimide-sensitive factor attachment protein receptor proteins VAMP8 and Vti1b mediate fusion of antimicrobial and canonical autophagosomes with lysosomes. Mol Biol Cell. 2010. https://doi.org/10.1091/mbc.E09-08-0693.

Article  Google Scholar 

Itakura E, Kishi-Itakura C, Mizushima N. The Hairpin-type Tail-Anchored SNARE Syntaxin 17 Targets to Autophagosomes for Fusion with Endosomes/Lysosomes. Cell. 2012. https://doi.org/10.1016/j.cell.2012.11.001.

Article  Google Scholar 

Wang Y, Li L, Hou C, Lai Y, Long J, Liu J, et al. SNARE-mediated membrane fusion in autophagy. Semin Cell Dev Biol. 2016. https://doi.org/10.1016/j.semcdb.2016.07.009.

Article  Google Scholar 

Shen QH, Shi Y, Liu JQ, Su H, Huang JT, Zhang Y, et al. Acetylation of STX17 (syntaxin 17) controls autophagosome maturation. Autophagy. 2021. https://doi.org/10.1080/15548627.2020.1752471.

Article  Google Scholar 

Fader CM, Sanchez D, Furlan M, Colombo MI. Induction of autophagy promotes fusion of multivesicular bodies with autophagic vacuoles in k562 cells. Traffic. 2008. https://doi.org/10.1111/j.1600-0854.2007.00677.x.

Article  Google Scholar 

Munafo DB, Colombo MI. Induction of autophagy causes dramatic changes in the subcellular distribution of GFP-Rab24. Traffic. 2002. https://doi.org/10.1034/j.1600-0854.2002.30704.x.

Article  Google Scholar 

Nozawa T, Aikawa C, Goda A, Maruyama F, Hamada S, Nakagawa I. The small GTPases Rab9A and Rab23 function at distinct steps in autophagy during Group A Streptococcus infection. Cell Microbiol. 2012. https://doi.org/10.1111/j.1462-5822.2012.01792.x.

Article  Google Scholar 

Ao X, Zou L, Wu Y. Regulation of autophagy by the Rab GTPase network. Cell Death Differ. 2014. https://doi.org/10.1038/cdd.2013.187.

Article  Google Scholar 

Wong YC, Ysselstein D, Krainc D. Mitochondria-lysosome contacts regulate mitochondrial fission via RAB7 GTP hydrolysis. Nature. 2018. https://doi.org/10.1038/nature25486.

Article  Google Scholar 

Diao J, Liu R, Rong Y, Zhao M, Zhang J, Lai Y, et al. ATG14 promotes membrane tethering and fusion of autophagosomes to endolysosomes. Nature. 2015. https://doi.org/10.1038/nature14147.

Article  Google Scholar 

Yu L, Chen Y, Tooze SA. Autophagy pathway: Cellular and molecular mechanisms. Autophagy. 2018. https://doi.org/10.1080/15548627.2017.1378838.

Article  Google Scholar 

Matsui T, Jiang PD, Nakano S, Sakamaki Y, Yamamoto H, Mizushima N. Autophagosomal YKT6 is required for fusion with lysosomes independently of syntaxin 17. J Cell Biol. 2018. https://doi.org/10.1083/jcb.201712058.

Article  Google Scholar 

Yu IM,Hughson FM. Tethering Factors as Organizers of Intracellular Vesicular Traffic. Annual Review of Cell and Developmental Biology, Vol 26. 2010; doi:https://doi.org/10.1146/annurev.cellbio.042308.113327

Cai HQ, Reinisch K, Ferro-Novick S. Coats, tethers, Rabs, and SNAREs work together to mediate the intracellular destination of a transport vesicle. Dev Cell. 2007. https://doi.org/10.1016/j.devcel.2007.04.005.

Article  Google Scholar 

Jiang P, Nishimura T, Sakamaki Y, Itakura E, Hatta T, Natsume T, et al. The HOPS complex mediates autophagosome-lysosome fusion through interaction with syntaxin 17. Mol Biol Cell. 2014. https://doi.org/10.1091/mbc.E13-08-0447.

Article  Google Scholar 

Sun QM, Westphal W, Wong KN, Tan I, Zhong Q. Rubicon controls endosome maturation as a Rab7 effector. Proc Natl Acad Sci USA. 2010. https://doi.org/10.1073/pnas.1010554107.

Article  Google Scholar 

Matsunaga K, Saitoh T, Tabata K, Omori H, Satoh T, Kurotori N, et al. Two Beclin 1-binding proteins, Atg14L and Rubicon, reciprocally regulate autophagy at different stages. Nat Cell Biol. 2009. https://doi.org/10.1038/ncb1846.

Article  Google Scholar 

Sil P, Muse G, Martinez J. A ravenous defense: canonical and non-canonical autophagy in immunity. Curr Opin Immunol. 2018. https://doi.org/10.1016/j.coi.2017.10.004.

Article  Google Scholar 

McEwan DG, Popovic D, Gubas A, Terawaki S, Suzuki H, Stadel D, et al. PLEKHM1 regulates autophagosome-lysosome fusion through HOPS complex and LC3/GABARAP proteins. Mol Cell. 2015. https://doi.org/10.1016/j.molcel.2014.11.006.

Article  Google Scholar 

Liang C, Lee JS, Inn KS, Gack MU, Li Q, Roberts EA, et al. Beclin1-binding UVRAG targets the class C Vps complex to coordinate autophagosome maturation and endocytic trafficking. Nat Cell Biol. 2008. https://doi.org/10.1038/ncb1740.

Article  Google Scholar 

Takats S, Toth S, Szenci G, Juhasz G. Investigating Non-selective Autophagy in Drosophila. Methods Mol Biol. 2019. https://doi.org/10.1007/978-1-4939-8873-0_38.

Article  Google Scholar 

Martens S, Behrends C. Molecular Mechanisms of Selective Autophagy. J Mol Biol. 2020. https://doi.org/10.1016/j.jmb.2019.11.010.

Article  Google Scholar 

Russell RC, Yuan HX, Guan KL. Autophagy regulation by nutrient signaling. Cell Res. 2014. https://doi.org/10.1038/cr.2013.166.

Article  Google Scholar 

Grumati P, Dikic I. Ubiquitin signaling and autophagy. J Biol Chem. 2018. https://doi.org/10.1074/jbc.TM117.000117.

Article  Google Scholar 

Khaminets A, Behl C, Dikic I. Ubiquitin-Dependent And Independent Signals In Selective Autophagy. Trends Cell Biol. 2016. https://doi.org/10.1016/j.tcb.2015.08.010.

Article  Google Scholar 

Matsumoto G, Wada K, Okuno M, Kurosawa M, Nukina N. Serine 403 phosphorylation of p62/SQSTM1 regulates selective autophagic clearance of ubiquitinated proteins. Mol Cell. 2011. https://doi.org/10.1016/j.molcel.2011.07.039.

Article  Google Scholar 

Kirkin V, Lamark T, Sou YS, Bjorkoy G, Nunn JL, Bruun JA, et al. A role for NBR1 in autophagosomal degradation of ubiquitinated substrates. Mol Cell. 2009. https://doi.org/10.1016/j.molcel.2009.01.020.

Article  Google Scholar 

Verstrepen L, Verhelst K, Carpentier I, Beyaert R. TAX1BP1, a ubiquitin-binding adaptor protein in innate immunity and beyond. Trends Biochem Sci. 2011. https://doi.org/10.1016/j.tibs.2011.03.004.

Article  Google Scholar 

Viret C, Rozieres A, Faure M. Novel Insights into NDP52 Autophagy Receptor Functioning. Trends Cell Biol. 2018. https://doi.org/10.1016/j.tcb.2018.01.003.

Article  Google Scholar 

Hou P, Yang K, Jia P, Liu L, Lin Y, Li Z, et al. A novel selective autophagy receptor, CCDC50, delivers K63 polyubiquitination-activated RIG-I/MDA5 for degradation during viral infection. Cell Res. 2021. https://doi.org/10.1038/s41422-020-0362-1.

Article  Google Scholar 

Zhou Z, Liu J, Fu T, Wu P, Peng C, Gong X, et al. Phosphorylation regulates the binding of autophagy receptors to FIP200 Claw domain for selective autophagy initiation. Nat Commun. 2021. https://doi.org/10.1038/s41467-021-21874-1.

Article  Google Scholar 

Zhang J, Ney PA. Role of BNIP3 and NIX in cell death, autophagy, and mitophagy. Cell Death Differ. 2009. https://doi.org/10.1038/cdd.2009.16.

Article  Google Scholar 

Yan C, Gong L, Chen L, Xu M, Abou-Hamdan H, Tang M, et al. PHB2 (prohibitin 2) promotes PINK1-PRKN/Parkin-dependent mitophagy by the PARL-PGAM5-PINK1 axis. Autophagy. 2020. https://doi.org/10.1080/15548627.2019.1628520.

Article  Google Scholar 

Jiang X, Wang X, Ding X, Du M, Li B, Weng X, et al. FAM134B oligomerization drives endoplasmic reticulum membrane scission for ER-phagy. EMBO J. 2020. https://doi.org/10.15252/embj.2019102608.

Article  Google Scholar 

Chen M, Chen Z, Wang Y, Tan Z, Zhu C, Li Y, et al. Mitophagy receptor FUNDC1 regulates mitochondrial dynamics and mitophagy. Autophagy. 2016. https://doi.org/10.1080/15548627.2016.1151580.

Article  Google Scholar 

Borg Distefano M, Hofstad Haugen L, Wang Y, Perdreau-Dahl H, Kjos I, Jia D, et al. TBC1D5 controls the GTPase cycle of Rab7b. J Cell Sci. 2018. https://doi.org/10.1242/jcs.216630.

Article  Google Scholar 

Jiang S, Wells CD, Roach PJ. Starch-binding domain-containing protein 1 (Stbd1) and glycogen metabolism: Identification of the Atg8 family interacting motif (AIM) in Stbd1 required for interaction with GABARAPL1. Biochem Biophys Res Commun. 2011. https://doi.org/10.1016/j.bbrc.2011.08.106.

Article  Google Scholar 

Marshall RS, Hua Z, Mali S, McLoughlin F, Vierstra RD. ATG8-Binding UIM Proteins Define a New Class of Autophagy Adaptors and Receptors. Cell. 2019. https://doi.org/10.1016/j.cell.2019.02.009.

Article  Google Scholar 

Florey O, Overholtzer M. Autophagy proteins in macroendocytic engulfment. Trends Cell Biol. 2012. https://doi.org/10.1016/j.tcb.2012.04.005.

Article  Google Scholar 

Martinez J, Malireddi RK, Lu Q, Cunha LD, Pelletier S, Gingras S, et al. Molecular characterization of LC3-associated phagocytosis reveals distinct roles for Rubicon, NOX2 and autophagy proteins. Nat Cell Biol. 2015. https://doi.org/10.1038/ncb3192.

留言 (0)

沒有登入
gif