Clamping strategies for organ-on-a-chip devices

DiMasi, J. A., Grabowski, H. G. & Hansen, R. W. Innovation in the pharmaceutical industry: new estimates of R&D costs. J. Health Econ. 47, 20–33 (2016).

Article  Google Scholar 

Mullard, A. Parsing clinical success rates. Nat. Rev. Drug Discov. 15, 447 (2016).

Google Scholar 

Skardal, A., Aleman, J., Forsythe, S., Rajan, S. & Murphy, S. Drug compound screening in single and integrated multi-organoid body- on-a-chip systems. Biofabrication 12, 025017 (2020).

Article  CAS  Google Scholar 

Skardal, A. et al. Multi-tissue interactions in an integrated three-tissue organ-on-a-chip platform. Sci. Rep. 7, 8837 (2017).

Article  Google Scholar 

Mcaleer, C. W. et al. Multi-organ system for the evaluation of efficacy and off-target toxicity of anticancer therapeutics. Sci. Transl. Med. 11, eaav1386 (2019).

Article  CAS  Google Scholar 

Zhang, B. & Radisic, M. Organ-on-A-chip devices advance to market. Lab Chip 17, 2395–2420 (2017).

Article  CAS  Google Scholar 

QY Research. Global Organ-On-Chip Market Insights, Forecast to 2025 (QY Research, 2019).

Franzen, N. et al. Impact of organ-on-a-chip technology on pharmaceutical R&D costs. Drug Discov. Today 24, 1720–1724 (2019).

Article  Google Scholar 

Willyard, C. Channeling chip power: Tissue chips are being put to the test by industry. Nat. Med. 23, 138–140 (2017).

Article  CAS  Google Scholar 

Horejs, C. Organ chips, organoids and the animal testing conundrum. Nat. Rev. Mater. 6, 372–373 (2021).

Article  Google Scholar 

Low, L. A., Mummery, C., Berridge, B. R., Austin, C. P. & Tagle, D. A. Organs-on-chips: into the next decade. Nat. Rev. Drug Discov. 20, 345–361 (2021).

Article  CAS  Google Scholar 

Schuster, B. et al. Automated microfluidic platform for dynamic and combinatorial drug screening of tumor organoids. Nat. Commun. 11, 5271 (2020).

Article  CAS  Google Scholar 

Abhyankar, V. V., Wu, M., Koh, C.-Y. & Hatch, A. V. A reversibly sealed, easy access, modular (SEAM) microfluidic architecture to establish in vitro tissue interfaces. PLoS ONE 11, e0156341 (2016).

Article  Google Scholar 

Ma, L. D. et al. Design and fabrication of a liver-on-a-chip platform for convenient, highly efficient, and safe: in situ perfusion culture of 3D hepatic spheroids. Lab Chip 18, 2547–2562 (2018).

Article  CAS  Google Scholar 

Anwar, K., Han, T. & Kim, S. M. Sensors and Actuators B : Chemical Reversible sealing techniques for microdevice applications. Sens. Actuators B Chem. 153, 301–311 (2011).

Article  CAS  Google Scholar 

Herland, A. et al. Quantitative prediction of human pharmacokinetic responses to drugs via fluidically coupled vascularized organ chips. Nat. Biomed. Eng. 4, 421–436 (2020).

Article  CAS  Google Scholar 

Huh, D. et al. Reconstituting organ-level lung functions on a chip. Science 328, 1662–1668 (2010).

Article  CAS  Google Scholar 

Park, T. E. et al. Hypoxia-enhanced Blood-Brain Barrier Chip recapitulates human barrier function and shuttling of drugs and antibodies. Nat. Commun. 10, 2621 (2019).

Article  Google Scholar 

Jang, K. J. et al. Human kidney proximal tubule-on-a-chip for drug transport and nephrotoxicity assessment. Integr. Biol. 5, 1119–1129 (2013).

Article  CAS  Google Scholar 

Kim, S. et al. Pharmacokinetic profile that reduces nephrotoxicity of gentamicin in a perfused kidney-on-a-chip. Biofabrication 8, 015021 (2016).

Article  Google Scholar 

Sun, X. & Nunes, S. S. Biowire platform for maturation of human pluripotent stem cell-derived cardiomyocytes. Methods 101, 21–26 (2016).

Article  CAS  Google Scholar 

Nunes, S. S. et al. Biowire: A platform for maturation of human pluripotent stem cell-derived cardiomyocytes. Nat. Methods 10, 781–787 (2013).

Article  CAS  Google Scholar 

Esch, E. W., Bahinski, A. & Huh, D. Organs-on-chips at the frontiers of drug discovery. Nat. Rev. Drug Discov. 14, 248–260 (2015).

Article  CAS  Google Scholar 

Schimek, K. et al. Human multi-organ chip co-culture of bronchial lung culture and liver spheroids for substance exposure studies. Sci. Rep. 10, 7865 (2020).

Article  CAS  Google Scholar 

Sharifi, F. et al. A foreign body response-on-a-chip platform. Adv. Healthc. Mater. 8, e1801425 (2019).

Article  Google Scholar 

Kulthong, K. et al. Implementation of a dynamic intestinal gut-on-a-chip barrier model for transport studies of lipophilic dioxin congeners. RSC Adv. 8, 32440–32453 (2018).

Article  CAS  Google Scholar 

McDonald, J. C. et al. Fabrication of microfluidic systems in poly(dimethylsiloxane). Electrophoresis 21, 27–40 (2000).

Article  CAS  Google Scholar 

Chen, Q., Li, G. & Nie, Y. Investigation and improvement of reversible microfluidic devices based on glass–PDMS–glass sandwich configuration. Microfluid. Nanofluid. 16, 83–90 (2014).

Article  CAS  Google Scholar 

Thompson, C. S. & Abate, A. R. Adhesive-based bonding technique for PDMS microfluidic devices. Lab Chip 13, 632–635 (2013).

Article  CAS  Google Scholar 

Cao, H. H. et al. Reversible bonding by dimethyl-methylphenylmethoxy siloxane-Based stamping technique for reusable poly(dimethylsiloxane) microfluidic chip. Micro Nano Lett. 10, 229–232 (2015).

Article  CAS  Google Scholar 

Shiroma, L. S. et al. Self-regenerating and hybrid irreversible/reversible PDMS microfluidic devices. Sci. Rep. 6, 26032 (2016).

Article  Google Scholar 

Pitingolo, G., Riaud, A., Nastruzzi, C. & Taly, V. Tunable and reversible gelatin-based bonding for microfluidic cell culture. Adv. Eng. Mater. 21, 1900145 (2019).

Article  Google Scholar 

Dekker, S. et al. Standardized and modular microfluidic platform for fast Lab on Chip system development. Sens. Actuators B Chem. 272, 468–478 (2018).

Article  CAS  Google Scholar 

Tkachenko, E., Gutierrez, E., Ginsberg, M. H. & Groisman, A. An easy to assemble microfluidic perfusion device with a magnetic clamp. Lab Chip 9, 1085–1095 (2009).

Article  CAS  Google Scholar 

Agarwal, A. Microfluidic heart on a chip for higher throughput pharmacological studies. Lab Chip 21, 3599–3608 (2013).

Article  Google Scholar 

Esch, M. B., Ueno, H., Applegate, R. & Shuler, M. L. Modular, pumpless body-on-a-chip platform for the co-culture of GI tract epithelium and 3D primary liver tissue. Lab Chip 16, 2719–2729 (2016).

Article  CAS  Google Scholar 

Wang, Y. I., Abaci, H. E. & Shuler, M. L. Microfluidic blood–brain barrier model provides in vivo-like barrier properties for drug permeability screening. Biotechnol. Bioeng. 114, 184–194 (2017).

Article  CAS  Google Scholar 

Satoh, T. et al. A multi-throughput multi-organ-on-a-chip system on a plate formatted pneumatic pressure-driven medium circulation platform. Lab Chip 18, 115–125 (2018).

Article  CAS  Google Scholar 

Domansky, K. et al. Perfused multiwell plate for 3D liver tissue engineering. Lab Chip 10, 51–58 (2010).

Article  CAS  Google Scholar 

Schaff, U. Y. et al. Vascular mimetics based on microfluidics for imaging the leukocyte-endothelial inflammatory response. Lab Chip 7, 448–456 (2007).

Article  CAS  Google Scholar 

Crozatier, C. et al. Microfluidic modulus for convenient cell culture and screening experiments. Microelectron. Eng. 84, 1694–1697 (2007).

Article  CAS  Google Scholar 

Tsou, J. et al. Spatial regulation of inflammation by human aortic endothelial cells in a linear gradient of shear stress. Microcirculation 15, 311–323 (2008).

Article  CAS  Google Scholar 

Le Berre, M., Crozatier, C., Velve Casquillas, G. & Chen, Y. Reversible assembling of microfluidic devices by aspiration. Microelectron. Eng. 83, 1284–1287 (2006).

Article  Google Scholar 

Khademhosseini, A. et al. Cell docking inside microwells within reversibly sealed microfluidic channels for fabricating multiphenotype cell arrays. Lab Chip 5, 1380–1386 (2005).

Article  CAS  Google Scholar 

Rafat, M., Raad, D. R., Rowat, A. C. & Auguste, D. T. Fabrication of reversibly adhesive fluidic devices using magnetism. Lab Chip 9, 3016–3019 (2009).

Article  CAS  Google Scholar 

Pitingolo, G., Nizard, P., Riaud, A. & Taly, V. Beyond the on/off chip trade-off: A reversibly sealed microfluidic platform for 3D tumor microtissue analysis. Sens. Actuators B Chem. 274, 393–401 (2018).

Article  CAS  Google Scholar 

Rasponi, M. et al. Reliable magnetic reversible assembly of complex microfluidic devices: Fabrication, characterization, and biological validation. Microfluid. Nanofluidics 10, 1097–1107 (2011).

Article  CAS  Google Scholar 

Tsao, C. W. & Lee, Y. P. Magnetic microparticle-polydimethylsiloxane composite for reversible microchannel bonding. Sci. Technol. Adv. Mater. 17, 2–11 (2016).

Article  CAS  Google Scholar 

Shah, P. et al. A microfluidics-based in vitro model of the gastrointestinal human-microbe interface. Nat. Commun. 7, 11535 (2016).

留言 (0)

沒有登入
gif