Genome-wide assessment of DNA methylation alterations induced by superovulation, sexual immaturity and in vitro follicle growth in mouse blastocysts

CJM Fauser B. Towards the global coverage of a unified registry of IVF outcomes. 2019. https://www.cdc.gov/

Macklon NS, Stouffer RL, Giudice LC, Fauser BCJM. The science behind 25 years of ovarian stimulation for in vitro fertilization. Endocr Rev. 2006;27:170–207.

Article  Google Scholar 

Vuong LN, Ho VNA, Ho TM, Dang VQ, Phung TH, Giang NH, et al. In-vitro maturation of oocytes versus conventional IVF in women with infertility and a high antral follicle count: a randomized non-inferiority controlled trial. Hum Reprod. 2020;35(11):2537–47.

Article  CAS  Google Scholar 

Herta AC, Lolicato F, Smitz JEJ. In vitro follicle culture in the context of IVF. Reproduction. 2018;156:F59-73.

Article  CAS  Google Scholar 

Roseboom TJ. Developmental plasticity and its relevance to assisted human reproduction. Hum Reprod. 2018;33:546–52.

Article  Google Scholar 

Pandey S, Shetty A, Hamilton M, Bhattacharya S, Maheshwari A. Obstetric and perinatal outcomes in singleton pregnancies resulting from ivf/icsi: a systematic review and meta-analysis. Hum Reprod Update. 2012;18:485–503.

Article  Google Scholar 

Heber MF, Ptak GE. The effects of assisted reproduction technologies on metabolic health and disease†. Biol Reprod. 2021;104(4):734–44.

Article  Google Scholar 

Hattori H, Hiura H, Kitamura A, Miyauchi N, Kobayashi N, Takahashi S, et al. Association of four imprinting disorders and ART. Clin Epigenetics. 2019;11(1):1–12. https://doi.org/10.1186/s13148-019-0623-3.

Article  CAS  Google Scholar 

El Hajj N, Haertle L, Dittrich M, Denk S, Lehnen H, Hahn T, et al. DNA methylation signatures in cord blood of ICSI children. Hum Reprod. 2017;32(8):1761–9.

Article  Google Scholar 

Novakovic B, Lewis S, Halliday J, Kennedy J, Burgner DP, Czajko A, et al. Assisted reproductive technologies are associated with limited epigenetic variation at birth that largely resolves by adulthood. Nat Commun. 2019. https://doi.org/10.1038/s41467-019-11929-9.

Article  Google Scholar 

Castillo-Fernandez JE, Loke YJ, Bass-Stringer S, Gao F, Xia Y, Wu H, et al. DNA methylation changes at infertility genes in newborn twins conceived by in vitro fertilisation. Genome Med. 2017;9(1):1–15. https://doi.org/10.1186/s13073-017-0413-5.

Article  CAS  Google Scholar 

Gosden R, Trasler J, Lucifero D, Faddy M. Rare congenital disorders, imprinted genes, and assisted reproductive technology. Lancet. 2003;361(9373):1975–7.

Article  Google Scholar 

Kindsfather AJ, Czekalski MA, Pressimone CA, Erisman MP, Mann MRW. Perturbations in imprinted methylation from assisted reproductive technologies but not advanced maternal age in mouse preimplantation embryos. Clin Epigenetics. 2019. https://doi.org/10.1186/s13148-019-0751-9.

Article  Google Scholar 

Krisher RL. Maternal age affects oocyte developmental potential at both ends of the age spectrum. Reprod Fertil Dev. 2019;31(1):1–9.

Article  Google Scholar 

Eppig JJ, Schroeder AC. Capacity of mouse oocytes from preantral follicles to undergo embryogenesis and development to live young after growth, maturation, and fertilization in vitro. Biol Reprod. 1989;41(2):268–76.

Article  CAS  Google Scholar 

Eppig JJ, Schroeder AC, O’Brien MJ. Developmental capacity of mouse oocytes matured in vitro: effects of gonadotrophic stimulation, follicular origin and oocyte size. J Reprod Fertil. 1992;95(1):119–27.

Article  CAS  Google Scholar 

Jiao GZ, Cao XY, Cui W, Lian HY, Miao YL, Wu XF, et al. Developmental potential of prepubertal mouse oocytes is compromised due mainly to their impaired synthesis of glutathione. PLoS ONE. 2013;8(3):58018.

Article  Google Scholar 

Sisk CL, Foster DL. The neural basis of puberty and adolescence. Nature Neurosci. 2004;7:1040–7.

Article  CAS  Google Scholar 

Almstrup K, Lindhardt Johansen M, Busch AS, Hagen CP, Nielsen JE, Petersen JH, et al. Pubertal development in healthy children is mirrored by DNA methylation patterns in peripheral blood. Sci Rep. 2016;6(1):1–12.

Google Scholar 

Saenz-De-Juano MD, Ivanova E, Billooye K, Herta AC, Smitz J, Kelsey G, et al. Genome-wide assessment of DNA methylation in mouse oocytes reveals effects associated with in vitro growth, superovulation, and sexual maturity. Clin Epigenetics. 2019. https://doi.org/10.1186/s13148-019-0794-y.

Article  Google Scholar 

Saenz-de-Juano MD, Billooye K, Smitz J, Anckaert E. The loss of imprinted DNA methylation in mouse blastocysts is inflicted to a similar extent by in vitro follicle culture and ovulation induction. Mol Hum Reprod. 2016;22(6):427–41. https://doi.org/10.1093/molehr/gaw013.

Article  CAS  Google Scholar 

Market-Velker BA, Zhang L, Magri LS, Bonvissuto AC, Mann MRW. Dual effects of superovulation: loss of maternal and paternal imprinted methylation in a dose-dependent manner. Hum Mol Genet. 2009;19(1):36–51.

Article  Google Scholar 

Kobayashi H, Sakurai T, Imai M, Takahashi N, Fukuda A, Yayoi O, et al. Contribution of intragenic DNA methylation in mouse gametic DNA methylomes to establish Oocyte-specific heritable marks. PLoS Genet. 2012;8(1):e1002440.

Article  CAS  Google Scholar 

Smallwood SA, Tomizawa SI, Krueger F, Ruf N, Carli N, Segonds-Pichon A, et al. Dynamic CpG island methylation landscape in oocytes and preimplantation embryos. Nat Genet. 2011;43(8):811–4.

Article  CAS  Google Scholar 

Segers I, Adriaenssens T, Ozturk E, Smitz J. Acquisition and loss of oocyte meiotic and developmental competence during in vitro antral follicle growth in mouse. Fertil Steril. 2010;93(8):2695–700.

Article  Google Scholar 

Berntsen S, Söderström-Anttila V, Wennerholm UB, Laivuori H, Loft A, Oldereid NB, et al. The health of children conceived by ART: “The chicken or the egg?” Hum Reprod Update. 2019;25:137–58.

Article  Google Scholar 

Anckaert E, Adriaenssens T, Romero S, Dremier S, Smitz J. Unaltered imprinting establishment of key imprinted genes in mouse oocytes after in vitro follicle culture under variable follicle-stimulating hormone exposure. Int J Dev Biol. 2009;53(4):541–8.

Article  CAS  Google Scholar 

Anckaert E, Sánchez F, Billooye K, Smitz J. Dynamics of imprinted DNA methylation and gene transcription for imprinting establishment in mouse oocytes in relation to culture duration variability. Biol Reprod. 2013;89(6):130–1.

Article  Google Scholar 

Velker BAM, Denomme MM, Krafty RT, Mann MRW. Maintenance of Mest imprinted methylation in blastocyst-stage mouse embryos is less stable than other imprinted loci following superovulation or embryo culture. Environ Epigenetics. 2017;3(3):1–12. https://doi.org/10.1093/eep/dvx015/4098080.

Article  CAS  Google Scholar 

Shi W, Haaf T. Aberrant methylation patterns at the two-cell stage as an indicator of early developmental failure. Mol Reprod Dev. 2002;63(3):329–34.

Article  CAS  Google Scholar 

Huffman SR, Pak Y, Rivera RM. Superovulation induces alterations in the epigenome of zygotes, and results in differences in gene expression at the blastocyst stage in mice. Mol Reprod Dev. 2015;82(3):207–17.

Article  CAS  Google Scholar 

Diken E, Linke M, Baumgart J, Eshkind L, Strand D, Strand S, et al. Superovulation influences methylation reprogramming and delays onset of DNA replication in both pronuclei of mouse zygotes. Cytogenet Genome Res. 2018;156(2):95–105.

Article  CAS  Google Scholar 

Yu B, Smith TH, Battle SL, Ferrell S, Hawkins RD. Superovulation alters global DNA methylation in early mouse embryo development. Epigenetics. 2019;14(8):780–90. https://doi.org/10.1080/15592294.2019.1615353.

Article  Google Scholar 

Liang XW, Cui XS, Sun SC, Jin YX, Heo YT, Namgoong S, et al. Superovulation induces defective methylation in line-1 retrotransposon elements in blastocyst. Reprod Biol Endocrinol. 2013;11(1):1–9.

Article  Google Scholar 

Peters H. The development of the mouse ovary from birth to maturity. Acta Endocrinol (Copenh). 1969;62(1):98–116.

CAS  Google Scholar 

Gruhn JR, Zielinska AP, Shukla V, Blanshard R, Capalbo A, Cimadomo D, et al. Chromosome errors in human eggs shape natural fertility over reproductive life span. Science. 2019;365(6460):1466–9.

Article  CAS  Google Scholar 

Tepekoy F, Ustunel I, Akkoyunlu G. Protein kinase C isoforms α, δ and ϵ are differentially expressed in mouse ovaries at different stages of postnatal development. J Ovarian Res. 2014. https://doi.org/10.1186/s13048-014-0117-z.

Article  Google Scholar 

Branco MR, King M, Perez-Garcia V, Bogutz AB, Caley M, Fineberg E, et al. Maternal DNA methylation regulates early trophoblast development. Dev Cell. 2016;36(2):152–63.

Article  CAS  Google Scholar 

Sanchez-Delgado M, Court F, Vidal E, Medrano J, Monteagudo-Sánchez A, Martin-Trujillo A, et al. Human oocyte-derived methylation differences persist in the placenta revealing widespread transient imprinting. PLoS Genet. 2016;12(11):1006427.

Article  Google Scholar 

Denomme MM, Zhang L, Mann MRW. Embryonic imprinting perturbations do not originate from superovulation-induced defects in DNA methylation acquisition. Fertil Steril. 2011;96(3):734-738.e2. https://doi.org/10.1016/j.fertnstert.2011.06.055.

Article  CAS  Google Scholar 

Sato A, Otsu E, Negishi H, Utsunomiya T, Arima T. Aberrant DNA methylation of imprinted loci in superovulated oocytes. Hum Reprod. 2007;22(1):26–35.

Article  CAS  Google Scholar 

El Hajj N, Trapphoff T, Linke M, May A, Hansmann T, Kuhtz J, et al. Limiting dilution bisulfte (pyro)sequencing reveals parent-specific methylation patterns in single early mouse embryos and bovine oocytes. Epigenetics. 2011;6(10):1176–88.

Article  Google Scholar 

De Waal E, Yamazaki Y, Ingale P, Bartolomei MS, Yanagimachi R, McCarrey JR. Gonadotropin stimulation contributes to an increased incidence of epimutations in ICSI-derived mice. Hum Mol Genet. 2012;21(20):4460–72.

Article  Google Scholar 

Fortier AL, McGraw S, Lopes FL, Niles KM, Landry M, Trasler JM. Modulation of imprinted gene expression following superovulation. Mol Cell Endocrinol. 2014;388(1–2):51–7. https://doi.org/10.1016/j.mce.2014.03.003.

Article  CAS  Google Scholar 

Yamaguchi N, Yuki R, Aoyama K, Kubota S, Yamaguchi N, Kubota S, et al. Overexpression of zinc-finger protein 777 (ZNF777) inhibits proliferation at low cell density through down-regulation of FAM129A. J Cell Biochem. 2015;116(6):954–68.

Article  Google Scholar 

Peall KJ, Smith DJ, Kurian MA, Wardle M, Waite AJ, Hedderly T, et al. SGCE mutations cause psychiatric disorders: clinical and genetic characterization. Brain. 2013;136(1):294–303.

留言 (0)

沒有登入
gif