Examining the effects of BRG1 over-expression on Candida albicans strains growing as pseudohyphae

Bensen ES, Filler SG, Berman J (2002) A forkhead transcription factor is important for true hyphal as well as yeast morphogenesis in Candida albicans. Eukaryot Cell 1:787–798. https://doi.org/10.1128/EC.1.5.787-798.2002

Article  CAS  Google Scholar 

Braun BR, Johnson AD (1997) Control of filament formation in Candida albicans by the transcriptional repressor TUP1. Science 277:105–109. https://doi.org/10.1126/science.277.5322.105

Article  CAS  Google Scholar 

Braun BR, Kadosh D, Johnson AD (2001) NRG1, a repressor of filamentous growth in C.albicans, is down-regulated during filament induction. EMBO J 20:4753–4761. https://doi.org/10.1093/emboj/20.17.4753

Article  CAS  Google Scholar 

Care RS, Trevethick J, Binley KM, Sudbery PE (1999) The MET3 promoter: a new tool for Candida albicans molecular genetics. Mol Microbiol 34:792–798. https://doi.org/10.1046/j.1365-2958.1999.01641.x

Article  CAS  Google Scholar 

Cleary IA, Lazzell AL, Monteagudo C et al (2012) BRG1 and NRG1 form a novel feedback circuit regulating Candida albicans hypha formation and virulence. Mol Microbiol 85:557–573. https://doi.org/10.1111/j.1365-2958.2012.08127.x

Article  CAS  Google Scholar 

Cleary IA, Mulabagal P, Reinhard SM et al (2010) Pseudohyphal regulation by the transcription factor Rfg1p in Candida albicans. Eukaryot Cell 9:1363–1373. https://doi.org/10.1128/EC.00088-10

Article  CAS  Google Scholar 

Cleary IA, Reinhard SM, Lazzell AL et al (2016) Examination of the pathogenic potential of Candida albicans filamentous cells in an animal model of haematogenously disseminated candidiasis. FEMS Yeast Res 16:fow011. https://doi.org/10.1093/femsyr/fow011

Article  CAS  Google Scholar 

Do E, Cravener MV, Huang MY et al (2022) Collaboration between antagonistic cell type regulators governs natural variation in the Candida albicans biofilm and hyphal gene expression network. mBio 13:e01937–22. https://doi.org/10.1128/mbio.01937-22

Du H, Guan G, Xie J et al (2012) Roles of Candida albicans Gat2, a GATA-type zinc finger transcription factor, in biofilm formation, filamentous growth and virulence. PLOS ONE 7:e29707. https://doi.org/10.1371/journal.pone.0029707

Article  CAS  Google Scholar 

Huang MY, Woolford CA, May G et al (2019) Circuit diversification in a biofilm regulatory network. PLOS Pathogens 15:e1007787. https://doi.org/10.1371/journal.ppat.1007787

Article  CAS  Google Scholar 

Kadosh D, Johnson AD (2001) Rfg1, a protein related to the Saccharomyces cerevisiae hypoxic regulator Rox1, controls filamentous growth and virulence in Candida albicans. Mol Cell Biol 21:2496–2505. https://doi.org/10.1128/MCB.21.7.2496-2505.2001

Article  CAS  Google Scholar 

Khalaf RA, Zitomer RS (2001) The DNA binding protein Rfg1 is a repressor of filamentation in Candida albicans. Genetics 157:1503–1512. https://doi.org/10.1093/genetics/157.4.1503

Article  CAS  Google Scholar 

Köhler GA, White TC, Agabian N (1997) Overexpression of a cloned IMP dehydrogenase gene of Candida albicans confers resistance to the specific inhibitor mycophenolic acid. J Bacteriol 179:2331–2338. https://doi.org/10.1128/jb.179.7.2331-2338.1997

Article  Google Scholar 

Lu Y, Su C, Liu H (2012) A GATA transcription factor recruits Hda1 in response to reduced Tor1 signaling to establish a hyphal chromatin state in Candida albicans. PLOS Pathogens 8:e1002663. https://doi.org/10.1371/journal.ppat.1002663

Article  CAS  Google Scholar 

Murad AMA, Lee PR, Broadbent ID et al (2000) CIp10, an efficient and convenient integrating vector for Candida albicans. Yeast 16:325–327. https://doi.org/10.1002/1097-0061(20000315)16:4%3c325::AID-YEA538%3e3.0.CO;2-#

Article  CAS  Google Scholar 

Murad AMA, Leng P, Straffon M et al (2001) NRG1 represses yeast–hypha morphogenesis and hypha-specific gene expression in Candida albicans. EMBO J 20:4742–4752. https://doi.org/10.1093/emboj/20.17.4742

Article  CAS  Google Scholar 

Nakayama H, Mio T, Nagahashi S et al (2000) Tetracycline-regulatable system to tightly control gene expression in the pathogenic fungus Candida albicans. Infect Immun 68:6712–6719. https://doi.org/10.1128/IAI.68.12.6712-6719.2000

Article  CAS  Google Scholar 

Nobile CJ, Fox EP, Nett JE et al (2012) A recently evolved transcriptional network controls biofilm development in Candida albicans. Cell 148:126–138. https://doi.org/10.1016/j.cell.2011.10.048

Article  CAS  Google Scholar 

Reuß O, Vik Å, Kolter R, Morschhäuser J (2004) The SAT1 flipper, an optimized tool for gene disruption in Candida albicans. Gene 341:119–127. https://doi.org/10.1016/j.gene.2004.06.021

Article  CAS  Google Scholar 

Sudbery PE (2011) Growth of Candida albicans hyphae. Nat Rev Microbiol 9:737–748. https://doi.org/10.1038/nrmicro2636

Article  CAS  Google Scholar 

Wightman R, Bates S, Amornrrattanapan P, Sudbery P (2004) In Candida albicans, the Nim1 kinases Gin4 and Hsl1 negatively regulate pseudohypha formation and Gin4 also controls septin organization. J Cell Biol 164:581–591. https://doi.org/10.1083/jcb.200307176

Article  CAS  Google Scholar 

留言 (0)

沒有登入
gif