Nanocellulose from agro-waste: a comprehensive review of extraction methods and applications

Abdi MM, Razalli RL, Tahir PM, Chaibakhsh N, Hassani M, Mir M (2019) Optimized fabrication of newly cholesterol biosensor based on nanocellulose. Int J Biol Macromol 126:1213–1222. https://doi.org/10.1016/j.ijbiomac.2019.01.001

Article  CAS  Google Scholar 

Abdul Khalil HPS, Davoudpour Y, Islam MN, Mustapha A, Sudesh K, Dungani R, Jawaid M (2014) Production and modification of nanofibrillated cellulose using various mechanical processes: a review. Carbohyd Polym 99:649–665. https://doi.org/10.1016/j.carbpol.2013.08.069

Article  CAS  Google Scholar 

Abraham E, Deepa B, Pothen LA, Cintil J, Thomas S, John MJ, Anandjiwala R, Narine SS (2013) Environmental friendly method for the extraction of coir fibre and isolation of nanofibre. Carbohyd Polym 92(2):1477–1483. https://doi.org/10.1016/j.carbpol.2012.10.056

Article  CAS  Google Scholar 

Ahmad Khorairi ANS, Sofian-Seng N-S, Othaman R, Abdul Rahman H, Mohd Razali NS, Lim SJ, Wan Mustapha WA (2021) A review on agro-industrial waste as cellulose and nanocellulose source and their potentials in food applications. Food Rev Int. https://doi.org/10.1080/87559129.2021.1926478

Article  Google Scholar 

Ahsan HM, Zhang X, Li Y, Li B, Liu S (2019) Surface modification of microcrystalline cellulose: physicochemical characterization and applications in the stabilization of Pickering emulsions. Int J Biol Macromol 132:1176–1184. https://doi.org/10.1016/j.ijbiomac.2019.04.051

Article  CAS  Google Scholar 

Ajelou Z, Nikfarjam N, Deng Y, Taheri-Qazvini N (2019) Expanded polystyrene via stabilized water droplet by in-situ modified starch nanocrystals. Colloids Surf A Physicochem Eng Aspects 582:123863. https://doi.org/10.1016/j.colsurfa.2019.123863

Article  CAS  Google Scholar 

Akhavan-Kharazian N, Izadi-Vasafi H (2019) Preparation and characterization of chitosan/gelatin/nanocrystalline cellulose/calcium peroxide films for potential wound dressing applications. Int J Biol Macromol 133:881–891. https://doi.org/10.1016/j.ijbiomac.2019.04.159

Article  CAS  Google Scholar 

Alemdar A, Sain M (2008) Isolation and characterization of nanofibers from agricultural residues—wheat straw and soy hulls. Biores Technol 99(6):1664–1671. https://doi.org/10.1016/j.biortech.2007.04.029

Article  CAS  Google Scholar 

Ashori A, Babaee M, Jonoobi M, Hamzeh Y (2014) Solvent-free acetylation of cellulose nanofibers for improving compatibility and dispersion. Carbohyd Polym 102:369–375. https://doi.org/10.1016/j.carbpol.2013.11.067

Article  CAS  Google Scholar 

Aulin C, Ahola S, Josefsson P, Nishino T, Hirose Y, Österberg M, Wågberg L (2009) Nanoscale cellulose films with different crystallinities and mesostructures—their surface properties and interaction with water. Langmuir 25(13):7675–7685. https://doi.org/10.1021/la900323n

Article  CAS  Google Scholar 

Azeredo HMC, Rosa MF, Mattoso LHC (2017) Nanocellulose in bio-based food packaging applications. Ind Crops Prod 97:664–671. https://doi.org/10.1016/j.indcrop.2016.03.013

Article  CAS  Google Scholar 

Bai L, Lv S, Xiang W, Huan S, McClements DJ, Rojas OJ (2019) Oil-in-water Pickering emulsions via microfluidization with cellulose nanocrystals: 1. Formation and stability. Food Hydrocolloids 96:699–708. https://doi.org/10.1016/j.foodhyd.2019.04.038

Article  CAS  Google Scholar 

Barbash VA, Yashchenko OV, Gondovska AS, Deykun IM (2021) Preparation and characterization of nanocellulose obtained by TEMPO-mediated oxidation of organosolv pulp from reed stalks. Appl Nanosci 12(4):835–848. https://doi.org/10.1007/s13204-021-01749-z

Article  CAS  Google Scholar 

Bondeson D, Mathew A, Oksman K (2006) Optimization of the isolation of nanocrystals from microcrystalline cellulose by acid hydrolysis. Cellulose 13(2):171–180. https://doi.org/10.1007/s10570-006-9061-4

Article  CAS  Google Scholar 

Brand W, van Kesteren PCE, Swart E, Oomen AG (2022) Overview of potential adverse health effects of oral exposure to nanocellulose. Nanotoxicology 16(2):217–246. https://doi.org/10.1080/17435390.2022.2069057

Article  CAS  Google Scholar 

Brinchi L, Cotana F, Fortunati E, Kenny JM (2013) Production of nanocrystalline cellulose from lignocellulosic biomass: Technology and applications. Carbohyd Polym 94(1):154–169. https://doi.org/10.1016/j.carbpol.2013.01.033

Article  CAS  Google Scholar 

Brown AJ (1886) XLIII.—on an acetic ferment which forms cellulose. J Chem Soc Trans 49:432–439

Article  CAS  Google Scholar 

Bulota M, Kreitsmann K, Hughes M, Paltakari J (2012) Acetylated microfibrillated cellulose as a toughening agent in poly(lactic acid). J Appl Polym Sci 126(S1):E449–E458. https://doi.org/10.1002/app.36787

Article  CAS  Google Scholar 

Candido RG, Godoy GG, Gonçalves AR (2017) Characterization and application of cellulose acetate synthesized from sugarcane bagasse. Carbohyd Polym 167:280–289. https://doi.org/10.1016/j.carbpol.2017.03.057

Article  CAS  Google Scholar 

Carlsson DO, Lindh J, Nyholm L, Strømme M, Mihranyan A (2014) Cooxidant-free TEMPO-mediated oxidation of highly crystalline nanocellulose in water. RSC Adv 4(94):52289–52298. https://doi.org/10.1039/c4ra11182f

Article  CAS  Google Scholar 

Carneiro AP, Rodríguez O, Macedo EA (2017) Dissolution and fractionation of nut shells in ionic liquids. Biores Technol 227:188–196. https://doi.org/10.1016/j.biortech.2016.11.112

Article  CAS  Google Scholar 

Cherhal F, Cousin F, Capron I (2016) Structural description of the interface of pickering emulsions stabilized by cellulose nanocrystals. Biomacromolecules 17(2):496–502. https://doi.org/10.1021/acs.biomac.5b01413

Article  CAS  Google Scholar 

Claro FC, Jordão C, de Viveiros BM, Isaka LJE, Villanova Junior JA, Magalhães WLE (2020) Low cost membrane of wood nanocellulose obtained by mechanical defibrillation for potential applications as wound dressing. Cellulose 27(18):10765–10779. https://doi.org/10.1007/s10570-020-03129-2

Article  CAS  Google Scholar 

Costa L, Fonseca AF, Pereira FV, Druzian JI (2015) Extraction and characterization of cellulose nanocrystals from corn stover. Cell Chem Technol 49(2):127–133

Google Scholar 

Dai H, Ou S, Huang Y, Huang H (2018) Utilization of pineapple peel for production of nanocellulose and film application. Cellulose 25(3):1743–1756. https://doi.org/10.1007/s10570-018-1671-0

Article  CAS  Google Scholar 

Das K, Ray D, Bandyopadhyay NR, Ghosh T, Mohanty AK, Misra M (2009) A study of the mechanical, thermal and morphological properties of microcrystalline cellulose particles prepared from cotton slivers using different acid concentrations. Cellulose 16(5):783–793. https://doi.org/10.1007/s10570-009-9280-6

Article  CAS  Google Scholar 

Dasan YK, Bhat AH, Ahmad F (2017) Polymer blend of PLA/PHBV based bionanocomposites reinforced with nanocrystalline cellulose for potential application as packaging material. Carbohyd Polym 157:1323–1332. https://doi.org/10.1016/j.carbpol.2016.11.012

Article  CAS  Google Scholar 

Deepa B, Abraham E, Cherian BM, Bismarck A, Blaker JJ, Pothan LA, Leao AL, de Souza SF, Kottaisamy M (2011) Structure, morphology and thermal characteristics of banana nano fibers obtained by steam explosion. Biores Technol 102(2):1988–1997. https://doi.org/10.1016/j.biortech.2010.09.030

Article  CAS  Google Scholar 

Dehnad D, Mirzaei H, Emam-Djomeh Z, Jafari S-M, Dadashi S (2014) Thermal and antimicrobial properties of chitosan–nanocellulose films for extending shelf life of ground meat. Carbohyd Polym 109:148–154. https://doi.org/10.1016/j.carbpol.2014.03.063

Article  CAS  Google Scholar 

Dima S-O, Panaitescu D-M, Orban C, Ghiurea M, Doncea S-M, Fierascu R, Nistor C, Alexandrescu E, Nicolae C-A, Trică B, Moraru A, Oancea F (2017) Bacterial nanocellulose from side-streams of Kombucha beverages production: preparation and physical–chemical properties. Polymers 9(12):374. https://doi.org/10.3390/polym9080374

Article  CAS  Google Scholar 

Doherty TV, Mora-Pale M, Foley SE, Linhardt RJ, Dordick JS (2010) Ionic liquid solvent properties as predictors of lignocellulose pretreatment efficacy. Green Chem 12(11):1967. https://doi.org/10.1039/c0gc00206b

Article  CAS  Google Scholar 

Dong S, Hirani AA, Colacino KR, Lee YW, Roman M (2012) Cytotoxicity and cellular uptake of cellulose nanocrystals. Nano LIFE 02(03):1241006. https://doi.org/10.1142/s1793984412410061

Article  Google Scholar 

Dong F, Li S, Liu Z, Zhu K, Wang X, Jin C (2015) Improvement of quality and shelf life of strawberry with nanocellulose/chitosan composite coatings. Bangladesh J Bot 44(5 Suppl):709–717

Google Scholar 

El Achaby M, Kassab Z, Aboulkas A, Gaillard C, Barakat A (2018) Reuse of red algae waste for the production of cellulose nanocrystals and its application in polymer nanocomposites. Int J Biol Macromol 106:681–691. https://doi.org/10.1016/j.ijbiomac.2017.08.067

Article  CAS  Google Scholar 

Elgharbawy AA, Alam MZ, Moniruzzaman M, Goto M (2016) Ionic liquid pretreatment as emerging approaches for enhanced enzymatic hydrolysis of lignocellulosic biomass. Biochem Eng J 109:252–267. https://doi.org/10.1016/j.bej.2016.01.021

Article  CAS  Google Scholar 

Emam HE, Mohamed AL (2021) Controllable release of povidone-iodine from networked Pectin@Carboxymethyl pullulan hydrogel. Polymers 13(18):3118. https://doi.org/10.3390/polym13183118

Article  CAS  Google Scholar 

Emam HE, Shaheen TI (2019) Investigation into the role of surface modification of cellulose nanocrystals with succinic anhydride in dye removal. J Polym Environ 27(11):2419–2427. https://doi.org/10.1007/s10924-019-01533-9

Article  CAS  Google Scholar 

Espert M, Salvador A, Sanz T (2020) Cellulose ether oleogels obtained by emulsion-templated approach without additional thickeners. Food Hydrocolloids 109:106085. https://doi.org/10.1016/j.foodhyd.2020.106085

Article  CAS  Google Scholar 

Eyholzer C, Borges de Couraça A, Duc F, Bourban PE, Tingaut P, Zimmermann T, Månson JAE, Oksman K (2011) Biocomposite hydrogels with carboxymethylated, nanofibrillated cellulose powder for replacement of the nucleus pulposus. Biomacromolecules 12(5):1419–1427. https://doi.org/10.1021/bm101131b

Article  CAS  Google Scholar 

Faradilla RHF, Lee G, Rawal A, Hutomo T, Stenzel MH, Arcot J (2016) Nanocellulose characteristics from the inner and outer layer of banana pseudo-stem prepared by TEMPO-mediated oxidation. Cellulose 23(5):3023–3037. https://doi.org/10.1007/s10570-016-1025-8

Article  CAS  Google Scholar 

Faradilla RHF, Lee G, Arns J-Y, Roberts J, Martens P, Stenzel MH, Arcot J (2017) Characteristics of a free-standing film from banana pseudostem nanocellulose generated from TEMPO-mediated oxidation. Carbohyd Polym 174:1156–1163. https://doi.org/10.1016/j.carbpol.2017.07.025

Article 

留言 (0)

沒有登入
gif