Different peripheral expression patterns of the nicotinic acetylcholine receptor in dementia with Lewy bodies and Alzheimer’s disease

Skaper SD, Facci L, Zusso M, Giusti P. An inflammation-centric view of neurological disease: beyond the neuron. Front Cell Neurosci. 2018;12:72.

Article  Google Scholar 

Filipov NM. Overview of peripheral and central inflammatory responses and their contribution to neurotoxicity. In: Aschner M, Costa LG, editors. Advances in neurotoxicology; 2019.

Prinz M, Priller J. The role of peripheral immune cells in the CNS in steady state and disease. Nat Neurosci. 2017;20:136–44.

Article  Google Scholar 

Dantzer R. Neuroimmune interactions: from the brain to the immune system and vice versa. Physiol Rev. 2018;98:477–504.

Article  Google Scholar 

Kwon HS, Koh SH. Neuroinflammation in neurodegenerative disorders: the roles of microglia and astrocytes. Transl Neurodegener. 2020;9(1):42.

Article  Google Scholar 

Halder N, Lal G. Cholinergic system and its therapeutic importance in inflammation and autoimmunity. Front Immunol. 2021;12:660342.

Article  Google Scholar 

Fujii T, Mashimo M, Moriwaki Y, Misawa H, Ono S, Horiguchi K, et al. Physiological functions of the cholinergic system in immune cells. J Pharmacol Sci. 2017;134:1–21.

Article  Google Scholar 

Fujii T, Mashimo M, Moriwaki Y, Misawa H, Ono S, Horiguchi K, et al. Expression and function of the cholinergic system in immune cells. Front Immunol. 2017;8:1085.

Article  Google Scholar 

Kawashima K, Fujii T. Extraneuronal cholinergic system in lymphocytes. Pharmacol Ther. 2000;86:29–48.

Article  Google Scholar 

Kawashima K, Fujii T. The lymphocytic cholinergic system and its contribution to the regulation of immune activity. Life Sci. 2003;74:675–96.

Article  Google Scholar 

Gallowitsch-Puerta M, Pavlov VA. Neuro-immune interactions via the cholinergic anti-inflammatory pathway. Life Sci. 2007;80:2325–9.

Article  Google Scholar 

De Simone R, Ajmone-Cat MA, Carnevale D, Minghetti L. Activation of alpha7 nicotinic acetylcholine receptor by nicotine selectively up-regulates cyclooxygenase-2 and prostaglandin E2 in rat microglial cultures. J Neuroinflammation. 2005;2:4.

Article  Google Scholar 

Dani JA. Neuronal nicotinic acetylcholine receptor structure and function and response to nicotine. Int Rev Neurobiol. 2015;124:3–19.

Article  Google Scholar 

Benhammou K, Lee M, Strook M, Sullivan B, Logel J, Raschen K, et al. [(3) H] Nicotine binding in peripheral blood cells of smokers is correlated with the number of cigarettes smoked per day. Neuropharmacology. 2000;39:2818–29.

Article  Google Scholar 

Hosur V, Leppanen S, Abutaha A, Loring RH. Gene regulation of alpha4beta2 nicotinic receptors: microarray analysis of nicotine-induced receptor up-regulation and anti-inflammatory effects. J Neurochem. 2009;111(3):848–58.

Article  Google Scholar 

Matsunaga K, Klein TW, Friedman H, Yamamoto Y. Involvement of nicotinic acetylcholine receptors in suppression of antimicrobial activity and cytokine responses of alveolar macrophages to legionella pneumophila infection by nicotine. J Immunol. 2001;167:6518–24.

Article  Google Scholar 

Martín A, Szczupak B, Gómez-Vallejo V, Domercq M, Cano A, Padro D, et al. In vivo PET imaging of the α4β2 nicotinic acetylcholine receptor as a marker for brain inflammation after cerebral ischemia. J Neurosci. 2015;35(15):5998–6009.

Article  Google Scholar 

Holmes C. Review: systemic inflammation and alzheimer’s disease. Neuropathol Appl Neurobiol. 2013;39:51–68.

Article  Google Scholar 

Perry EK, Tomlinson BE, Blessed G, Bergmann K, Gibson PH, Perry RH. Correlation of cholinergic abnormalities with senile plaques and mental test scores in senile dementia. Br Med J. 1987;2:1457–9.

Article  Google Scholar 

Perry EK, Marshall E, Perry RH, Irving D, Smith CJ, Blessed G, et al. Cholinergic and dopaminergic activities in senile dementia of Lewy body type. Alzheimer Dis Assoc Disord. 1990;4:87–95.

Article  Google Scholar 

Ballard C, Piggott M, Johnson M, Cairns N, Perry R, McKeith I, et al. Delusions associated with elevated muscarinic binding in dementia with Lewy bodies. Ann Neurol. 2000;48:868–76.

Article  Google Scholar 

Mesulam MM, Geula C. Nucleus basalis (Ch4) and cortical cholinergic innervation in the human brain: observations based on the distribution of acetylcholinesterase and choline acetyltransferase. J Comp Neurol. 1988;275:216–40.

Article  Google Scholar 

Tayebati SK, Piergentili A, Natale D, Amenta F. Evaluation of an agonist index: affinity ratio for compounds active on muscarinic cholinergic M2 receptors. J Auton Pharmacol. 1999;19:77–84.

Article  Google Scholar 

Reale M, Iarlori C, Gambi F, Feliciani C, Salone A, Toma L, et al. Treatment with an acetylcholinesterase inhibitor in Alzheimer patients modulates the expression and production of the pro-inflammatory and anti-inflammatory cytokines. J Neuroimmunol. 2004;148(1–2):162–71.

Article  Google Scholar 

Costa P, Auger CB, Traver DJ, Costa LG. Identification of m3, m4 and m5 subtypes of muscarinic receptor mRNA in human blood mononuclear cells. J Neuroimmunol. 1995;60:45–51.

Article  Google Scholar 

Fujii T, Kawashima K. YM905, a novel M3 antagonist, inhibits Ca2+ signaling and c-fos gene expression mediated via muscarinic receptors in human T cells. Gen Pharmacol. 2000;35:71–5.

Article  Google Scholar 

Reale M, Carrarini C, Russo M, Dono F, Ferri L, Di Pietro M, et al. Muscarinic receptors expression in the peripheral blood cells differentiate dementia with Lewy bodies from Alzheimer's disease. J Alzheimers Dis. 2022;85(1):323–30.

Article  Google Scholar 

McKeith IG, Boeve BF, Dickson DW, et al. Diagnosis and management of dementia with Lewy bodies. Neurology. 2017;89:88–100.

Article  Google Scholar 

McKhann GM, Knopman DS, Chertkow H, et al. The diagnosis of dementia due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement. 2011;7:263–9.

Article  Google Scholar 

Walker MP, Ayre GA, Cummings JL, et al. Quantifying fluctuation in dementia with Lewy bodies, Alzheimer’s disease, and vascular dementia. Neurology. 2000;54:1616–25 United States.

Article  Google Scholar 

Boeve BF, Molano JR, Ferman TJ, et al. Validation of the Mayo sleep questionnaire to screen for REM sleep behavior disorder in a community-based sample. J Clin Sleep Med. 2013;9:475–80.

Article  Google Scholar 

Goetz CG, Tilley BC, Shaftman SR, et al. Movement disorder society-sponsored revision of the unified Parkinson’s disease rating scale (MDS-UPDRS): scale presentation and clinimetric testing results. Mov Disord. 2008;23:2129–70.

Article  Google Scholar 

Cummings JL, Mega M, Gray K, Rosenberg-Thompson S, Carusi DA, Gornbein J. The neuropsychiatric inventory: comprehensive assessment of psychopathology in dementia. Neurology. 1994;44:2308–14.

Nasreddine ZS, Phillips NA, Bédirian V, et al. The Montreal cognitive assessment, MoCA: a brief screening tool for mild cognitive impairment. J Am Geriatr Soc. 2005;53(4):695–9.

Article  Google Scholar 

Morris JC. The clinical dementia rating (CDR): current version and scoring rules. Neurology. 1993;43(11):2412–4.

Article  Google Scholar 

Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) method. Methods. 2001;25(4):402–8.

Article  Google Scholar 

Usenko TS, Nikolaev MA, Miliukhina IV, et al. Plasma cytokine profile in synucleinophaties with dementia. J Clin Neurosci. 2020;78:323–6.

Article  Google Scholar 

King E, O'Brien JT, Donaghy P, et al. Peripheral inflammation in prodromal Alzheimer's and Lewy body dementias. J Neurol Neurosurg Psychiatry. 2018;89(4):339–45.

Article  Google Scholar 

Imamura K, Hishikawa N, Ono K, et al. Cytokine production of activated microglia and decrease in neurotrophic factors of neurons in the hippocampus of Lewy body disease brains. Acta Neuropathol. 2005;109(2):141–50.

Article  Google Scholar 

Leng F, Edison P. Neuroinflammation and microglial activation in Alzheimer disease: where do we go from here? Nat Rev Neurol. 2021;17(3):157–72.

Article  Google Scholar 

Morena M, Creput C, Bouzernidj M, et al. Randomised trial on clinical performances and biocompatibility of four high-flux hemodialyzers in two mode treatments: hemodialysis vs post dilution hemodiafiltration. Sci Rep. 2019;9:18265.

Article  Google Scholar 

Rei RT, Sabbagh MN, Corey-Bloom J, et al. Nicotinic receptor losses in dementia with Lewy bodies: comparisons with Alzheimer's disease. Neurobiol Aging. 2000;21(5):741–6.

Article  Google Scholar 

Roy R, Niccolini F, Pagano G, et al. Cholinergic imaging in dementia spectrum disorders. Eur J Nucl Med Mol Imaging. 2016;43:1376–86.

Article  Google Scholar 

Perry E. Cholinergic mechanisms and cognitive decline. Eur J Anaesthesiol. 1998;15:768–73.

Article  Google Scholar 

Aarsland D, Litvan I, Salmon D, et al. Performance on the dementia rating scale in Parkinson’s disease with dementia and dementia with Lewy bodies: comparison with progressive supranuclear palsy and Alzheimer’s disease. J Neurol Neurosurg Psychiatry. 2003;74:1215–20.

Article  Google Scholar 

Reale M, Di Nicola M, Velluto L, et al. Selective acetyl-and butyrylcholinesterase inhibitors reduce amyloid-β ex vivo activation of peripheral chemo-cytokines from Alzheimer's disease subjects: exploring the cholinergic anti-inflammatory pathway. Curr Alzheimer Res. 2014;11(6):608–22.

Article  Google Scholar 

Reale M, Costantini E. Cholinergic modulation of the immune system in Neuroinflammatory diseases. Diseases. 2021;9(2):29.

Article  Google Scholar 

留言 (0)

沒有登入
gif