The future of patient-derived xenografts in prostate cancer research

Sung, H. et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 71, 209–249 (2021).

Article  Google Scholar 

Sandhu, S. et al. Prostate cancer. Lancet 398, 1075–1090 (2021).

Article  CAS  Google Scholar 

Centenera, M. M. et al. A patient‐derived explant (PDE) model of hormone‐dependent cancer. Mol. Oncol. 12, 1608–1622 (2018).

Article  Google Scholar 

Arriaga, J. M. & Abate-Shen, C. Genetically engineered mouse models of prostate cancer in the postgenomic era. Cold Spring Harb. Perspect. Med. 9, a030528 (2019).

Article  CAS  Google Scholar 

Drost, J. et al. Organoid culture systems for prostate epithelial and cancer tissue. Nat. Protoc. 11, 347–358 (2016).

Article  CAS  Google Scholar 

Navone, N. M. et al. Movember GAP1 PDX project: an international collection of serially transplantable prostate cancer patient-derived xenograft (PDX) models. Prostate 78, 1262–1282 (2018).

Article  CAS  Google Scholar 

Gleave, A. M., Ci, X., Lin, D. & Wang, Y. A synopsis of prostate organoid methodologies, applications, and limitations. Prostate 80, 518–526 (2020).

Article  Google Scholar 

Risbridger, G. P., Toivanen, R. & Taylor, R. A. Preclinical models of prostate cancer: patient-derived xenografts, organoids, and other explant models. Cold Spring Harb. Perspect. Med. 8, a030536 (2018).

Article  Google Scholar 

Davies, A. H., Wang, Y. & Zoubeidi, A. Patient-derived xenografts: a platform for accelerating translational research in prostate cancer. Mol. Cell. Endocrinol. 462, 17–24 (2018).

Article  CAS  Google Scholar 

van de Merbel, A. F., van der Horst, G. & van der Pluijm, G. Patient-derived tumour models for personalized therapeutics in urological cancers. Nat. Rev. Urol. 18, 33–45 (2021).

Article  Google Scholar 

Inoue, T., Terada, N., Kobayashi, T. & Ogawa, O. Patient-derived xenografts as in vivo models for research in urological malignancies. Nat. Rev. Urol. 14, 267–283 (2017).

Article  Google Scholar 

Risbridger, G. P., Lawrence, M. G. & Taylor, R. A. PDX: moving beyond drug screening to versatile models for research discovery. J. Endocr. Soc. 4, bvaa132 (2020).

Article  CAS  Google Scholar 

Toivanen, R. et al. A preclinical xenograft model identifies castration-tolerant cancer-repopulating cells in localized prostate tumors. Sci. Transl. Med. 5, 187ra71 (2013).

Article  Google Scholar 

Priolo, C. et al. Establishment and genomic characterization of mouse xenografts of human primary prostate tumors. Am. J. Pathol. 176, 1901–1913 (2010).

Article  CAS  Google Scholar 

Risbridger, G. P. et al. The MURAL collection of prostate cancer patient-derived xenografts enables discovery through preclinical models of uro-oncology. Nat. Commun. 12, 5049 (2021).

Article  CAS  Google Scholar 

Wang, Y. et al. An orthotopic metastatic prostate cancer model in SCID mice via grafting of a transplantable human prostate tumor line. Lab. Invest. 85, 1392–1404 (2005).

Article  Google Scholar 

Palanisamy, N. et al. The MD anderson prostate cancer patient-derived xenograft series (MDA PCa PDX) captures the molecular landscape of prostate cancer and facilitates marker-driven therapy development. Clin. Cancer Res. 26, 4933–4946 (2020).

Article  CAS  Google Scholar 

Nguyen, H. M. et al. LuCaP prostate cancer patient‐derived xenografts reflect the molecular heterogeneity of advanced disease and serve as models for evaluating cancer therapeutics. Prostate 77, 654–671 (2017).

Article  CAS  Google Scholar 

Woo, X. Y. et al. Conservation of copy number profiles during engraftment and passaging of patient-derived cancer xenografts. Nat. Genet. 53, 86–99 (2021).

Article  CAS  Google Scholar 

Gao, H. et al. High-throughput screening using patient-derived tumor xenografts to predict clinical trial drug response. Nat. Med. 21, 1318–1325 (2015).

Article  CAS  Google Scholar 

Conte, N. et al. PDX Finder: a portal for patient-derived tumor xenograft model discovery. Nucleic Acids Res. 47, D1073–D1079 (2019).

Article  CAS  Google Scholar 

Krupke, D. M. et al. The mouse tumor biology database: a comprehensive resource for mouse models of human cancer. Cancer Res. 77, e67–e70 (2017).

Article  CAS  Google Scholar 

Byrne, A. T. et al. Interrogating open issues in cancer precision medicine with patient-derived xenografts. Nat. Rev. Cancer 17, 254 (2017).

Article  CAS  Google Scholar 

Lin, D. et al. High fidelity patient-derived xenografts for accelerating prostate cancer discovery and drug development. Cancer Res. 74, 1272–1283 (2014).

Article  CAS  Google Scholar 

Marques, R. B. et al. The human PC346 xenograft and cell line panel: a model system for prostate cancer progression. Eur. Urol. 49, 245–257 (2006).

Article  CAS  Google Scholar 

Brennen, W. N. et al. Resistance to androgen receptor signaling inhibition does not necessitate development of neuroendocrine prostate cancer. JCI Insight 6, e146827 (2021).

Article  Google Scholar 

Stone, K. R., Mickey, D. D., Wunderli, H., Mickey, G. H. & Paulson, D. F. Isolation of a human prostate carcinoma cell line (DU145). Int. J. Cancer 21, 274–281 (1978).

Article  CAS  Google Scholar 

Kaighn, M. E., Narayan, K. S., Ohnuki, Y., Lechner, J. F. & Jones, L. W. Establishment and characterization of a human prostatic carcinoma cell line (PC-3). Invest. Urol. 17, 16–23 (1979).

CAS  Google Scholar 

Horoszewicz, J. et al. The LNCaP cell line — a new model for studies on human prostatic carcinoma. Prog. Clin. Biol. Res. 37, 115–132 (1980).

CAS  Google Scholar 

Sobel, R. E. & Sadar, M. D. Cell lines used in prostate cancer research: a compendium of old and new lines — part 2. J. Urol. 173, 360–372 (2005).

Article  CAS  Google Scholar 

Sobel, R. E. & Sadar, M. D. Cell lines used in prostate cancer research: a compendium of old and new lines — part 1. J. Urol. 173, 342–359 (2005).

Article  CAS  Google Scholar 

Ghandi, M. et al. Next-generation characterization of the cancer cell line encyclopedia. Nature 569, 503–508 (2019).

Article  CAS  Google Scholar 

Vargas, R. et al. Case study: patient-derived clear cell adenocarcinoma xenograft model longitudinally predicts treatment response. NPJ Precis. Oncol. 2, 14 (2018).

Article  Google Scholar 

Wensink, G. E. et al. Patient-derived organoids as a predictive biomarker for treatment response in cancer patients. NPJ Precis. Oncol. 5, 30 (2021).

Article  Google Scholar 

Gao, D. et al. Organoid cultures derived from patients with advanced prostate cancer. Cell 159, 176–187 (2014).

Article  CAS  Google Scholar 

Puca, L. et al. Patient derived organoids to model rare prostate cancer phenotypes. Nat. Commun. 9, 2404 (2018).

Article  Google Scholar 

Lawrence, M. G. et al. A preclinical xenograft model of prostate cancer using human tumors. Nat. Protoc. 8, 836–848 (2013).

Article  CAS  Google Scholar 

Zhao, H., Nolley, R., Chen, Z. & Peehl, D. M. Tissue slice grafts: an in vivo model of human prostate androgen signaling. Am. J. Pathol. 177, 229–239 (2010).

Article  Google Scholar 

Erickson, A. et al. Spatially resolved clonal copy number alterations in benign and malignant tissue. Nature 608, 360–367 (2022).

Article  CAS  Google Scholar 

Porter, L. H. et al. Intraductal carcinoma of the prostate can evade androgen deprivation, with emergence of castrate‐tolerant cells. BJU Int. 121, 971–978 (2018).

Article  CAS  Google Scholar 

Risbridger, G. P. et al. Patient-derived xenografts reveal that intraductal carcinoma of the prostate is a prominent pathology in BRCA2 mutation carriers with prostate cancer and correlates with poor prognosis. Eur. Urol. 67, 496–503 (2015).

Article  CAS  Google Scholar 

Pauli, C. et al. Personalized in vitro and in vivo cancer models to guide precision medicine. Cancer Discov. 7, 462–477 (2017).

Article  Google Scholar 

Servant, R. et al. Prostate cancer patient-derived organoids: detailed outcome from a prospective cohort of 81 clinical specimens. J. Pathol. 254, 543–555 (2021).

Article  CAS  Google Scholar 

Welti, J. et al. Targeting bromodomain and extra-terminal (BET) family proteins in castration-resistant prostate cancer (CRPC). Clin. Cancer Res. 24, 3149–3162 (2018).

Article  CAS  Google Scholar 

Nguyen, H. G. et al. Development of a stress response therapy targeting aggressive prostate cancer. Sci. Transl. Med. 10, eaar2036 (2018).

Article  Google Scholar 

Mout, L. et al. Generating human prostate cancer organoids from leukapheresis enriched circulating tumour cells. Eur. J. Cancer 150, 179–189 (2021).

Article  CAS  Google Scholar 

Cyrta, J. et al. Role of specialized composition of SWI/SNF complexes in prostate cancer lineage plasticity. Nat. Commun. 11, 5549 (2020).

Article  CAS  Google Scholar 

Lee, S. et al. Establishment and analysis of three-dimensional (3D) organoids derived from patient prostate cancer bone metastasis specimens and their xenografts. J. Vis. Exp. 156, e60367 (2020).

留言 (0)

沒有登入
gif