MRI Contrasting Agent Based on Mn-MOF-74 Nanoparticles with Coordinatively Unsaturated Sites

Massoud TF, Gambhir SS (2003) Molecular imaging in living subjects: seeing fundamental biological processes in a new light. Genes Dev 17:545–580

Article  CAS  Google Scholar 

Wahsner J, Gale EM, Rodríguez-Rodrí-guez A, Caravan P (2019) Chemistry of MRI contrast agents: current challenges and new frontiers. Chem Rev 119:957–1057

Article  CAS  Google Scholar 

Marckmann P, Skov L, Rossen K et al (2006) Nephrogenic systemic fibrosis: suspected causative role of gadodiamide used for contrast-enhanced magnetic resonance imaging. J Am Soc Nephrol 17:2359

Article  Google Scholar 

Grobner T (2006) Gadolinium - a specific trigger for the development of nephrogenic fibrosing dermopathy and nephrogenic systemic fibrosis? Nephrol Dial Transplant 21:1104–1108

Article  CAS  Google Scholar 

Kanda T, Fukusato T, Matsuda M et al (2015) Gadolinium-based contrast agent accumulates in the brain even in subjects without severe renal dysfunction: evaluation of autopsy brain specimens with inductively coupled plasma mass spectroscopy. Radiol 276:228–232

Article  Google Scholar 

Hatje V, Bruland KW, Flegal AR (2016) Increases in anthropogenic gadolinium anomalies and rare earth element concentrations in San Francisco Bay over a 20 year record. Environ Sci Technol 50:4159–4168

Article  CAS  Google Scholar 

Gupta A, Caravan P, Price WS, Platas-Iglesias C, Gale EM (2020) Applications for transition-metal chemistry in contrast-enhanced magnetic resonance imaging. Inorg Chem 59:6648–6678

Article  CAS  Google Scholar 

Bennett KM, Jo J-i, Cabral H, Bakalova R, Aoki I (2014) MR imaging techniques for nano-pathophysiology and theranostics. Adv Drug Deliv Rev 74:75–94

Article  CAS  Google Scholar 

Wu EX, Tang H, Jensen JH (2004) Applications of ultrasmall superparamagnetic iron oxide contrast agents in the MR study of animal models. NMR Biomed 17:478–483

Article  Google Scholar 

M. Bulte WJ, Kraitchman LD, (2004) Monitoring cell therapy using iron oxide MR contrast agents. Curr Pharm Biotechnol 5:567–584

Article  Google Scholar 

Mahmoudi M, Sahraian MA, Shokrgozar MA, Laurent S (2011) Superparamagnetic iron oxide nanoparticles: promises for diagnosis and treatment of multiple sclerosis. ACS Chem Neurosci 2:118–140

Article  CAS  Google Scholar 

Dadfar SM, Roemhild K, Drude NI et al (2019) Iron oxide nanoparticles: diagnostic, therapeutic and theranostic applications. Adv Drug Deliv Rev 138:302–325

Article  CAS  Google Scholar 

Antonelli A, Magnani M (2022) SPIO nanoparticles and magnetic erythrocytes as contrast agents for biomedical and diagnostic applications. J Magn Magn Mater 541:168520

Article  CAS  Google Scholar 

Xiao Y, Du J (2020) Superparamagnetic nanoparticles for biomedical applications. J Mater Chem B 8:354–367

Article  CAS  Google Scholar 

Rowsell JLC, Yaghi OM (2004) Metal-organic frameworks: a new class of porous materials. Microporous Mesoporous Mater 73:3–14

Article  CAS  Google Scholar 

Zhou H-C, Long JR, Yaghi OM (2012) Introduction to metal-organic frameworks. Chem Rev 112:673–674

Article  CAS  Google Scholar 

Furukawa H, Cordova KE, O’Keeffe M, Yaghi OM (2013) The chemistry and applications of metal-organic frameworks. Sci (Washington, DC, U S) 341:974

Article  CAS  Google Scholar 

Jiang J, Zhao Y, Yaghi OM (2016) Covalent chemistry beyond molecules. J Am Chem Soc 138:3255–3265

Article  CAS  Google Scholar 

Diercks CS, Kalmutzki MJ, Diercks NJ, Yaghi OM (2018) Conceptual advances from werner complexes to metal-organic frameworks. ACS Cent Sci 4:1457–1464

Article  CAS  Google Scholar 

Ji Z, Wang H, Canossa S, Wuttke S, Yaghi OM (2020) Pore chemistry of metal-organic frameworks. Adv Funct Mater 30:2000238

Article  CAS  Google Scholar 

Rowsell JLC, Yaghi OM (2006) Effects of functionalization, catenation, and variation of the metal oxide and organic linking units on the low-pressure hydrogen adsorption properties of metal-organic frameworks. J Am Chem Soc 128:1304–1315

Article  CAS  Google Scholar 

Deng H, Grunder S, Cordova Kyle E et al (2012) Large-pore apertures in a series of metal-organic frameworks. Science 336:1018–1023

Article  CAS  Google Scholar 

Wong-Ng W, Kaduk JA, Wu H, Suchomel M (2012) Synchrotron X-ray studies of metal-organic framework M2(2,5-dihydroxyterephthalate), M = (Mn Co, Ni, Zn) (MOF74). Powder Diffr 27:256–262

Article  CAS  Google Scholar 

Zhou W, Wu H, Yildirim T (2008) Enhanced H2 adsorption in isostructural metal-organic frameworks with open metal sites: strong dependence of the binding strength on metal ions. J Am Chem Soc 130:15268–15269

Article  CAS  Google Scholar 

Botas JA, Calleja G, Sanchez-Sanchez M, Orcajo MG (2011) Effect of Zn/Co ratio in MOF-74 type materials containing exposed metal sites on their hydrogen adsorption behaviour and on their band gap energy. Int J Hydrogen Energy 36:10834–10844

Article  CAS  Google Scholar 

Becker TM, Heinen J, Dubbeldam D, Lin L-C, Vlugt TJH (2017) Polarizable force fields for CO2 and CH4 adsorption in M-MOF-74. J Phys Chem C 121:4659–4673

Article  CAS  Google Scholar 

Alonso G, Bahamon D, Keshavarz F, Gimenez X, Gamallo P, Sayos R (2018) Density functional theory-based adsorption isotherms for pure and flue gas mixtures on Mg-MOF-74. Application in CO2 Capture Swing Adsorption Processes. J Phys Chem C 122:3945–3957

Article  CAS  Google Scholar 

Helm L, Morrow JR, Bond CJ, et al (2018) Chapter 2: gadolinium-based contrast agents. In: Pierre VC, Allen MJ (eds) Contrast agents for MRI: experimental methods. Royal Society of Chemistry, pp 121–242

Maeda H (2021) The 35th Anniversary of the discovery of EPR effect: a new wave of nanomedicines for tumor-targeted drug delivery-personal remarks and future prospects. J Pers Med 11(3):229

Wu J (2021) The enhanced permeability and retention (EPR) effect: the significance of the concept and methods to enhance its application. J Pers Med 11(8):771

Islam R, Maeda H, Fang J (2022) Factors affecting the dynamics and heterogeneity of the EPR effect: pathophysiological and pathoanatomic features, drug formulations and physicochemical factors. Expert Opin Drug Delivery 19:199–212

Article  CAS  Google Scholar 

Shinde VR, Revi N, Murugappan S, Singh SP, Rengan AK (2022) Enhanced permeability and retention effect: a key facilitator for solid tumor targeting by nanoparticles. Photodiagnosis Photodyn Ther:102915

Iki N (2018) Exploration of science for designing high performance MRI contrast agents – a new approach using coordinatively unsaturated coordination polymers as a substrate. Japan: JSPS

Díaz-Garcí-a M, Ál Mayoral, Díaz I, Sánchez-Sánchez M (2014) Nanoscaled M-MOF-74 materials prepared at room temperature. Crystal Growth Design 14:2479–2487

Article  Google Scholar 

Jiang H, Wang Q, Wang H, Chen Y, Zhang M (2016) MOF-74 as an efficient catalyst for the low-temperature selective catalytic reduction of NOx with NH3. ACS Appl Mater Interfaces 8:26817–26826

Article  CAS  Google Scholar 

Agostoni V, Horcajada P, Noiray M et al (2015) A “green” strategy to construct non-covalent, stable and bioactive coatings on porous MOF nanoparticles. Sci Rep 5:7925

Article  CAS  Google Scholar 

Tóth É, Helm L, Merbach AE (2002) Relaxivity of MRI contrast agents. In: Berlin KW (ed) contrast agents I: Magnetic resonance imaging. Springer, Berlin Heidelberg, Heidelberg, pp 61–101

Chapter  Google Scholar 

Gale EM, Atanasova IP, Blasi F, Ay I, Caravan P (2015) A manganese alternative to gadolinium for MRI contrast. J Am Chem Soc 137:15548–15557

Article  CAS  Google Scholar 

Ma X, Gong A, Chen B et al (2015) Exploring a new SPION-based MRI contrast agent with excellent water-dispersibility, high specificity to cancer cells and strong MR imaging efficacy. Colloids Surf, B 126:44–49

Article  CAS  Google Scholar 

Hu J, Chen Y, Zhang H et al (2021) TEA-assistant synthesis of MOF-74 nanorods for drug delivery and in-vitro magnetic resonance imaging. Microporous Mesoporous Mater 315:110900

Article  CAS  Google Scholar 

留言 (0)

沒有登入
gif