Payload diversification: a key step in the development of antibody–drug conjugates

Strebhardt K, Ullrich A. Paul Ehrlich’s magic bullet concept: 100 years of progress. Nat Rev Cancer. 2008;8:473–80.

Article  CAS  Google Scholar 

Beck A, Goetsch L, Dumontet C, Corvaïa N. Strategies and challenges for the next generation of antibody-drug conjugates. Nat Rev Drug Discov. 2017;16:315–37.

Article  CAS  Google Scholar 

Bross PF, et al. Approval summary: gemtuzumab ozogamicin in relapsed acute myeloid leukemia. Clin Cancer Res. 2001;7:1490–6.

CAS  Google Scholar 

Petersdorf SH, et al. A phase 3 study of gemtuzumab ozogamicin during induction and postconsolidation therapy in younger patients with acute myeloid leukemia. Blood. 2013;121:4854–60.

Article  CAS  Google Scholar 

Drago JZ, Modi S, Chandarlapaty S. Unlocking the potential of antibody-drug conjugates for cancer therapy. Nat Rev Clin Oncol. 2021;18:327–44.

Article  Google Scholar 

do Pazo C, Nawaz K, Webster RM. The oncology market for antibody–drug conjugates. Nat Rev Drug Discov. 2021;20:583–4.

Article  CAS  Google Scholar 

Arlotta KJ, Owen SC. Antibody and antibody derivatives as cancer therapeutics. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2019;11: e1556.

Article  Google Scholar 

Liu R, Oldham RJ, Teal E, Beers SA, Cragg MS. Fc-engineering for modulated effector functions—improving antibodies for cancer treatment. Antibodies. 2020;9(4):64.

Article  Google Scholar 

Qiao J, Al-Tamimi M, Baker RI, Andrews RK, Gardiner EE. The platelet Fc receptor. FcγRIIa Immunol Rev. 2015;268:241–52.

Article  CAS  Google Scholar 

Uppal H, et al. Potential mechanisms for thrombocytopenia development with trastuzumab emtansine (T-DM1). Clin Cancer Res. 2015;21:123–33.

Article  CAS  Google Scholar 

Pegram MD, et al. First-in-human, phase 1 dose-escalation study of biparatopic anti-HER2 antibody-drug conjugate MEDI4276 in patients with HER2-positive advanced breast or gastric cancer. Mol Cancer Ther. 2021;20:1442–53.

Article  CAS  Google Scholar 

Deonarain MP. Miniaturised ’antibody’-drug conjugates for solid tumours? Drug Discov Today Technol. 2018;30:47–53.

Article  Google Scholar 

Deonarain MP, Yahioglu G. Current strategies for the discovery and bioconjugation of smaller, targetable drug conjugates tailored for solid tumor therapy. Expert Opin Drug Discov. 2021;16:613–24.

Article  CAS  Google Scholar 

Deonarain MP, et al. Small-format drug conjugates: a viable alternative to ADCs for solid tumours? Antibodies. 2018;7(2):16.

Article  CAS  Google Scholar 

Rypáček F, Drobník J, Chmelař V, Kálal J. The renal excretion and retention of macromolecules. Pflugers Arch. 1982;392:211–7.

Article  Google Scholar 

Pyzik M, et al. The neonatal Fc receptor (FcRn): a misnomer? Front Immunol. 2019;10:1540.

Article  CAS  Google Scholar 

Carter PJ, Lazar GA. Next generation antibody drugs: pursuit of the ‘high-hanging fruit.’ Nat Rev Drug Discov. 2018;17:197–223.

Article  CAS  Google Scholar 

Tsuchikama K, An Z. Antibody-drug conjugates: recent advances in conjugation and linker chemistries. Protein Cell. 2018;9:33–46.

Article  CAS  Google Scholar 

Herrera AF, et al. Anti-CD79B antibody-drug conjugate DCDS0780A in patients with B-cell non-hodgkin lymphoma: phase 1 dose-escalation study. Clin Cancer Res. 2022;28:1294–301.

Article  CAS  Google Scholar 

Zhou Q. Site-specific antibody conjugation for ADC and beyond. Biomedicines. 2017;5:E64.

Article  Google Scholar 

Duivelshof BL, et al. Glycan-mediated technology for obtaining homogeneous site-specific conjugated antibody-drug conjugates: synthesis and analytical characterization by using complementary middle-up LC/HRMS analysis. Anal Chem. 2020;92:8170–7.

Article  CAS  Google Scholar 

Zhang L, et al. A simple and efficient method to generate dual site-specific conjugation ADCs with cysteine residue and an unnatural amino acid. Bioconjugate Chem. 2021;32:1094–104.

Article  CAS  Google Scholar 

Hussain AF, et al. Toward homogenous antibody drug conjugates using enzyme-based conjugation approaches. Pharmaceuticals. 2021;14(4):343.

Article  CAS  Google Scholar 

Dai Z, et al. Synthesis of site-specific antibody-drug conjugates by ADP-ribosyl cyclases. Sci Adv. 2020;6(23):eaba6752.

Article  CAS  Google Scholar 

Puthenveetil S, et al. Multivalent peptidic linker enables identification of preferred sites of conjugation for a potent thialanstatin antibody drug conjugate. PLoS ONE. 2017;12: e0178452.

Article  Google Scholar 

Buecheler JW, Winzer M, Tonillo J, Weber C, Gieseler H. Impact of payload hydrophobicity on the stability of antibody-drug conjugates. Mol Pharm. 2018;15:2656–64.

Article  CAS  Google Scholar 

Ratanji KD, Derrick JP, Dearman RJ, Kimber I. Immunogenicity of therapeutic proteins: influence of aggregation. J Immunotoxicol. 2014;11:99–109.

Article  CAS  Google Scholar 

Lyon RP, et al. Reducing hydrophobicity of homogeneous antibody-drug conjugates improves pharmacokinetics and therapeutic index. Nat Biotechnol. 2015;33:733–5.

Article  CAS  Google Scholar 

Hamblett KJ, et al. Effects of drug loading on the antitumor activity of a monoclonal antibody drug conjugate. Clin Cancer Res. 2004;10:7063–70.

Article  CAS  Google Scholar 

Simmons JK, Burke PJ, Cochran JH, Pittman PG, Lyon RP. Reducing the antigen-independent toxicity of antibody-drug conjugates by minimizing their non-specific clearance through PEGylation. Toxicol Appl Pharmacol. 2020;392: 114932.

Article  CAS  Google Scholar 

Li Q, et al. PEG linker improves antitumor efficacy and safety of affibody-based drug conjugates. Int J Mol Sci. 2021;22:1540.

Article  CAS  Google Scholar 

Shao S, et al. Site-specific and hydrophilic ADCs through disulfide-bridged linker and branched PEG. Bioorg Med Chem Lett. 2018;28:1363–70.

Article  CAS  Google Scholar 

Burke PJ, et al. Optimization of a PEGylated glucuronide-monomethylauristatin E linker for antibody-drug conjugates. Mol Cancer Ther. 2017;16:116–23.

Article  CAS  Google Scholar 

Sonzini S, et al. Improved physical stability of an antibody-drug conjugate using host-guest chemistry. Bioconjug Chem. 2020;31:123–9.

Article  CAS  Google Scholar 

Viricel W, et al. Monodisperse polysarcosine-based highly-loaded antibody-drug conjugates. Chem Sci. 2019;10:4048–53.

Article  CAS  Google Scholar 

Conilh L, et al. Exatecan antibody drug conjugates based on a hydrophilic polysarcosine drug-linker platform. Pharmaceuticals. 2021;14(3):247.

Article  CAS  Google Scholar 

Dovgan I, et al. On the use of DNA as a linker in antibody-drug conjugates: synthesis, stability and in vitro potency. Sci Rep. 2020;10:7691.

Article  CAS  Google Scholar 

Yurkovetskiy AV, et al. A polymer-based antibody-Vinca drug conjugate platform: characterization and preclinical efficacy. Cancer Res. 2015;75:3365–72.

Article  CAS  Google Scholar 

Okajima D, et al. Datopotamab Deruxtecan, a novel TROP2-directed antibody–drug conjugate, demonstrates potent antitumor activity by efficient drug delivery to tumor cells. Mol Cancer Ther. 2021;20:2329–40.

Article  CAS  Google Scholar 

Teicher BA, Chari RVJ. Antibody conjugate therapeutics: challenges and potential. Clin Cancer Res. 2011;17:6389–97.

Article  CAS  Google Scholar 

Anderl J, Faulstich H, Hechler T, Kulke M. Antibody–drug conjugate payloads. In: Ducry L editor. Antibody-Drug Conjugates, 2013. pp. 51–70. https://doi.org/10.1007/978-1-62703-541-5_4.

Widdison WC, Chari RVJ. Factors involved in the design of cytotoxic payloads for antibody–drug conjugates. In: Phillips GL editor Antibody-drug conjugates and immunotoxins: from pre-clinical development to therapeutic applications. Springer; 2013. pp. 93–115. https://doi.org/10.1007/978-1-4614-5456-4_6.

Mantaj J, Jackson PJM, Rahman KM, Thurston DE. From anthramycin to pyrrolobenzodiazepine (PBD)-containing antibody-drug conjugates (ADCs). Angew Chem Int Ed Engl. 2017;56:462–88.

Article  CAS  Google Scholar 

Yaghoubi S, et al. Potential drugs used in the antibody–drug conjugate (ADC) architecture for cancer therapy. J Cell Physiol. 2020;235:31–64.

Article  CAS  Google Scholar 

Saber H, Simpson N, Ricks TK, Leighton JK. An FDA oncology analysis of toxicities associated with PBD-containing antibody-drug conjugates. Regul Toxicol Pharmacol. 2019;107: 104429.

Article  CAS  Google Scholar 

Hartley JA. Antibody-drug conjugates (ADCs) delivering pyrrolobenzodiazepine (PBD) dimers for cancer therapy. Expert Opin Biol Ther. 2021;21:931–43.

Article  CAS  Google Scholar 

Lee A. Loncastuximab tesirine: first approval. Drugs. 2021;81:1229–33.

Article  CAS  Google Scholar 

Keam SJ. Trastuzumab deruxtecan: first approval. Drugs. 2020;80:501–8.

Article  CAS 

留言 (0)

沒有登入
gif