Short-term Medication Effects on Brain Functional Activity and Network Architecture in First-Episode psychosis: a longitudinal fMRI study

Achard, S., & Bullmore, E. (2007). Efficiency and cost of economical brain functional networks. Plos Computational Biology, 3(2), e17. https://doi.org/10.1371/journal.pcbi.0030017

Article  Google Scholar 

Achard, S., Salvador, R., Whitcher, B., Suckling, J., & Bullmore, E. (2006). A resilient, low-frequency, small-world human brain functional network with highly connected association cortical hubs. Journal Of Neuroscience, 26(1), 63–72. https://doi.org/10.1523/jneurosci.3874-05.2006

Article  Google Scholar 

Anticevic, A. (2017). Understanding the role of thalamic circuits in schizophrenia neuropathology. Schizophrenia Research, 180, 1–3. https://doi.org/10.1016/j.schres.2016.11.044

Article  Google Scholar 

Anticevic, A., Haut, K., Murray, J. D., Repovs, G., Yang, G. J., Diehl, C., & Cannon, T. D. (2015). Association of Thalamic Dysconnectivity and Conversion to Psychosis in Youth and Young Adults at Elevated Clinical Risk. JAMA Psychiatry, 72(9), 882–891. https://doi.org/10.1001/jamapsychiatry.2015.0566

Article  Google Scholar 

Association, A. P. (1994). Diagnostic and Statistical Manual of Mental Disorders (DSM-IV-TR)

Bullmore, E., & Sporns, O. (2009). Complex brain networks: graph theoretical analysis of structural and functional systems. Nature Reviews Neuroscience, 10(3), 186–198. https://doi.org/10.1038/nrn2575

Article  Google Scholar 

Chen, J., Xu, Y., Zhang, K., Liu, Z., Xu, C., Shen, Y., & Xu, Q. (2013). Comparative study of regional homogeneity in schizophrenia and major depressive disorder. Am J Med Genet B Neuropsychiatr Genet, 162b(1), 36–43. https://doi.org/10.1002/ajmg.b.32116

Article  Google Scholar 

Cheng, W., Palaniyappan, L., Li, M., Kendrick, K. M., Zhang, J., Luo, Q., & Feng, J. (2015). Voxel-based, brain-wide association study of aberrant functional connectivity in schizophrenia implicates thalamocortical circuitry. NPJ Schizophr, 1, 15016. https://doi.org/10.1038/npjschz.2015.16

Article  Google Scholar 

Cho, K. I. K., Kim, M., Yoon, Y. B., Lee, J., Lee, T. Y., & Kwon, J. S. (2019). Disturbed thalamocortical connectivity in unaffected relatives of schizophrenia patients with a high genetic loading. Australian And New Zealand Journal Of Psychiatry, 53(9), 889–895. https://doi.org/10.1177/0004867418824020

Article  Google Scholar 

Clauset, A., Newman, M. E., & Moore, C. (2004). Finding community structure in very large networks. Phys Rev E Stat Nonlin Soft Matter Phys, 70(6 Pt 2), 066111. https://doi.org/10.1103/PhysRevE.70.066111

Article  Google Scholar 

Coscia, D. M., Narr, K. L., Robinson, D. G., Hamilton, L. S., Sevy, S., Burdick, K. E., & Szeszko, P. R. (2009). Volumetric and shape analysis of the thalamus in first-episode schizophrenia. Human Brain Mapping, 30(4), 1236–1245. https://doi.org/10.1002/hbm.20595

Article  Google Scholar 

Crossley, N. A., Marques, T. R., Taylor, H., Chaddock, C., Dell’Acqua, F., Reinders, A. A., & Dazzan, P. (2017). Connectomic correlates of response to treatment in first-episode psychosis. Brain, 140(2), 487–496. https://doi.org/10.1093/brain/aww297

Article  Google Scholar 

Csernansky, J. G., Schindler, M. K., Splinter, N. R., Wang, L., Gado, M., Selemon, L. D., & Miller, M. I. (2004). Abnormalities of thalamic volume and shape in schizophrenia. American Journal Of Psychiatry, 161(5), 896–902. https://doi.org/10.1176/appi.ajp.161.5.896

Article  Google Scholar 

Dandash, O., Pantelis, C., & Fornito, A. (2017). Dopamine, fronto-striato-thalamic circuits and risk for psychosis. Schizophrenia Research, 180, 48–57. https://doi.org/10.1016/j.schres.2016.08.020

Article  Google Scholar 

Del Fabro, L., Schmidt, A., Fortea, L., Delvecchio, G., D’Agostino, A., Radua, J., & Brambilla, P. (2021). Functional brain network dysfunctions in subjects at high-risk for psychosis: A meta-analysis of resting-state functional connectivity. Neuroscience And Biobehavioral Reviews, 128, 90–101. https://doi.org/10.1016/j.neubiorev.2021.06.020

Article  Google Scholar 

Dixon, L., Postrado, L., Delahanty, J., Fischer, P. J., & Lehman, A. (1999). The association of medical comorbidity in schizophrenia with poor physical and mental health. The Journal Of Nervous And Mental Disease, 187(8), 496–502. https://doi.org/10.1097/00005053-199908000-00006

Article  Google Scholar 

Elhamaoui, S., Yaalaoui, S., Moussaoui, D., & Battas, O. (2003). Two years follow-up of patients with acute psychotic access: evolutionary modes and prognosis. L Encéphale, 29(5), 425–429

Google Scholar 

Fumagalli, F., Frasca, A., Racagni, G., & Riva, M. A. (2009). Cognitive effects of second-generation antipsychotics: current insights into neurochemical mechanisms. Cns Drugs, 23(7), 603–614. https://doi.org/10.2165/00023210-200923070-00005

Article  Google Scholar 

Ganella, E. P., Seguin, C., Pantelis, C., Whittle, S., Baune, B. T., Olver, J., & Bartholomeusz, C. F. (2018). Resting-state functional brain networks in first-episode psychosis: A 12-month follow-up study. Australian And New Zealand Journal Of Psychiatry, 52(9), 864–875. https://doi.org/10.1177/0004867418775833

Article  Google Scholar 

Girvan, M., & Newman, M. E. (2002). Community structure in social and biological networks. Proc Natl Acad Sci U S A, 99(12), 7821–7826. https://doi.org/10.1073/pnas.122653799

Article  Google Scholar 

Green, M. F., Kern, R. S., Braff, D. L., & Mintz, J. (2000). Neurocognitive deficits and functional outcome in schizophrenia: are we measuring the “right stuff”? Schizophrenia Bulletin, 26(1), 119–136. https://doi.org/10.1093/oxfordjournals.schbul.a033430

Article  Google Scholar 

Greve, D. N., & Fischl, B. (2009). Accurate and robust brain image alignment using boundary-based registration. Neuroimage, 48(1), 63–72. https://doi.org/10.1016/j.neuroimage.2009.06.060

Article  Google Scholar 

Guo, W., Liu, F., Chen, J., Wu, R., Li, L., Zhang, Z., & Zhao, J. (2018). Treatment effects of olanzapine on homotopic connectivity in drug-free schizophrenia at rest. The World Journal Of Biological Psychiatry : The Official Journal Of The World Federation Of Societies Of Biological Psychiatry, 19(sup3), S106–s114. https://doi.org/10.1080/15622975.2017.1346280

Article  Google Scholar 

Hadley, J. A., Kraguljac, N. V., White, D. M., Hoef, V., Tabora, L., J., & Lahti, A. C. (2016). Change in brain network topology as a function of treatment response in schizophrenia: a longitudinal resting-state fMRI study using graph theory. NPJ Schizophr, 2, 16014. https://doi.org/10.1038/npjschz.2016.14

Article  Google Scholar 

Hassaan, T., Muhammad, F., & Uzma, F. (2015). Alterations of the occipital lobe in schizophrenia. Neurosciences, 20(3), 213–224. https://doi.org/10.17712/nsj.2015.3.20140757

Article  Google Scholar 

Hazlett, E. A., Buchsbaum, M. S., Byne, W., Wei, T. C., Spiegel-Cohen, J., Geneve, C., & Siever, L. J. (1999). Three-dimensional analysis with MRI and PET of the size, shape, and function of the thalamus in the schizophrenia spectrum. American Journal Of Psychiatry, 156(8), 1190–1199. https://doi.org/10.1176/ajp.156.8.1190

Article  Google Scholar 

He, Z., Deng, W., Li, M., Chen, Z., Jiang, L., Wang, Q., & Li, T. (2013). Aberrant intrinsic brain activity and cognitive deficit in first-episode treatment-naive patients with schizophrenia. Psychological Medicine, 43(4), 769–780. https://doi.org/10.1017/s0033291712001638

Article  Google Scholar 

Howes, O. D., & Kapur, S. (2009). The dopamine hypothesis of schizophrenia: version III–the final common pathway. Schizophrenia Bulletin, 35(3), 549–562. https://doi.org/10.1093/schbul/sbp006

Article  Google Scholar 

Hu, M. L., Zong, X. F., Zheng, J. J., Pantazatos, S. P., Miller, J. M., Li, Z. C., & Sang, D. E. (2016). Short-term Effects of Risperidone Monotherapy on Spontaneous Brain Activity in First-episode Treatment-naïve Schizophrenia Patients: A Longitudinal fMRI Study. Scientific Reports, 6, 34287. https://doi.org/10.1038/srep34287

Article  Google Scholar 

Huang, X. Q., Lui, S., Deng, W., Chan, R. C. K., Wu, Q. Z., Jiang, L. J., & Li, X. L. (2010). Localization of cerebral functional deficits in treatment-naive, first-episode schizophrenia using resting-state fMRI. Neuroimage, 49(4), 2901–2906. https://doi.org/10.1016/j.neuroimage.2009.11.072

Article  Google Scholar 

Kay, S. R., Fiszbein, A., & Opler, L. A. (1987). The positive and negative syndrome scale (PANSS) for schizophrenia. Schizophrenia Bulletin, 13(2), 261–276. https://doi.org/10.1093/schbul/13.2.261

Article  Google Scholar 

Kraguljac, N. V., McDonald, W. M., Widge, A. S., Rodriguez, C. I., Tohen, M., & Nemeroff, C. B. (2021). Neuroimaging Biomarkers in Schizophrenia. American Journal Of Psychiatry, 178(6), 509–521. https://doi.org/10.1176/appi.ajp.2020.20030340

Article  Google Scholar 

Kraguljac, N. V., White, D. M., Hadley, J. A., Visscher, K., Knight, D., ver, Hoef, L., & Lahti, A. C. (2016). Abnormalities in large scale functional networks in unmedicated patients with schizophrenia and effects of risperidone. Neuroimage Clin, 10, 146–158. https://doi.org/10.1016/j.nicl.2015.11.015

Lahti, A. C., Holcomb, H. H., Weiler, M. A., Medoff, D. R., & Tamminga, C. A. (2003). Functional effects of antipsychotic drugs: comparing clozapine with haloperidol. Biological Psychiatry, 53(7), 601–608. https://doi.org/10.1016/s0006-3223(02)01602-5

Article  Google Scholar 

Li, F., Lui, S., Yao, L., Hu, J., Lv, P., Huang, X., & Gong, Q. (2016a). Longitudinal Changes in Resting-State Cerebral Activity in Patients with First-Episode Schizophrenia: A 1-Year Follow-up Functional MR Imaging Study. Radiology, 279(3), 867–875. https://doi.org/10.1148/radiol.2015151334

Article  Google Scholar 

Li, F., Lui, S., Yao, L., Hu, J., Lv, P., Huang, X., & Gong, Q. J. R. (2016b). Longitudinal Changes in Resting-State Cerebral Activity in Patients with First-Episode Schizophrenia: A 1-Year Follow-up Functional MR Imaging Study. 279(3),151334. https://doi.org/10.1148/radiol.2015151334

Li, T., Wang, Q., Zhang, J., Rolls, E. T., Yang, W., Palaniyappan, L., & Feng, J. (2017). Brain-Wide Analysis of Functional Connectivity in First-Episode and Chronic Stages of Schizophrenia. Schizophrenia Bulletin, 43(2), 436–448. https://doi.org/10.1093/schbul/sbw099

Article  Google Scholar 

Li, Z., Kadivar, A., Pluta, J., Dunlop, J., & Wang, Z. (2012). Test-retest stability analysis of resting brain activity revealed by blood oxygen level-dependent functional MRI. Journal Of Magnetic Resonance Imaging, 36(2), 344–354. https://doi.org/10.1002/jmri.23670

Article  Google Scholar 

Liu, C., Xue, Z., Palaniyappan, L., Zhou, L., Liu, H., Qi, C., & Pu, W. (2016). Abnormally increased and incoherent resting-state activity is shared between patients with schizophrenia and their unaffected siblings. Schizophrenia Research, 171(1–3), 158–165. https://doi.org/10.1016/j.schres.2016.01.022

Article  Google Scholar 

Lo, C. Y., Su, T. W., Huang, C. C., Hung, C. C., Chen, W. L., Lan, T. H., & Bullmore, E. T. (2015). Randomization and resilience of brain functional networks as systems-level endophenotypes of schizophrenia. Proc Natl Acad Sci U S A, 112(29), 9123–9128. https://doi.org/10.1073/pnas.1502052112

Article  Google Scholar 

Logothetis, N. K. (2008). What we can do and what we cannot do with fMRI. Nature, 453(7197), 869–878. https://doi.org/10.1038/nature06976

Article  Google Scholar 

Lui, S., Li, T., Deng, W., Jiang, L., Wu, Q., Tang, H., & Gong, Q. (2010). Short-term effects of antipsychotic treatment on cerebral function in drug-naive first-episode schizophrenia revealed by “resting state” functional magnetic resonance imaging. Archives Of General Psychiatry, 67(8), 783–792. https://doi.org/10.1001/archgenpsychiatry.2010.84

Article  Google Scholar 

McGrath, J., Saha, S., Chant, D., & Welham, J. (2008). Schizophrenia: a concise overview of incidence, prevalence, and mortality. Epidemiologic Reviews, 30, 67–76. https://doi.org/10.1093/epirev/mxn001

Article  Google Scholar 

Morel, A. (2007). The thalamus and behavior: effects of anatomically distinct strokes. Neurology, 68(19), 1640; author reply 1640–1641. https://doi.org/10.1212/01.wnl.0000265608.00944.ff

Nina, V., Kraguljac, D., White, M., & Ann (2016). Aberrant Hippocampal Connectivity in Unmedicated Patients With Schizophrenia and Effects of Antipsychotic Medication: A Longitudinal Resting State Functional MRI Study.Schizophrenia Bulletin, 42(4)

Patel, A. X., Kundu, P., Rubinov, M., Jones, P. S., Vértes, P. E., Ersche, K. D., & Bullmore, E. T. (2014). A wavelet method for modeling and despiking motion artifacts from resting-state fMRI time series. Neuroimage, 95(100), 287–304. https://doi.org/10.1016/j.neuroimage.2014.03.012

Article  Google Scholar 

Plomp, G., Roinishvili, M., Chkonia, E., Kapanadze, G., Kereselidze, M., Brand, A., & Herzog, M. H. (2013). Electrophysiological evidence for ventral stream deficits in schizophrenia patients. Schizophrenia Bulletin, 39(3), 547–554. https://doi.org/10.1093/schbul/sbr175

Article  Google Scholar 

Rehman, A., & Al Khalili, Y. (2022). Neuroanatomy, Occipital Lobe. In StatPearls. StatPearls Publishing Copyright (2022). © StatPearls Publishing LLC

Riedel, M., Müller, N., Spellmann, I., Engel, R. R., Musil, R., Valdevit, R., & Möller, H. J. (2007). Efficacy of olanzapine versus quetiapine on cognitive dysfunctions in patients with an acute episode of schizophrenia. Eur Arch Psychiatry Clin Neurosci, 257(7), 402–412. https://doi.org/10.1007/s00406-007-0748-9

Article 

留言 (0)

沒有登入
gif