Baseline and usual cardiorespiratory fitness and the risk of chronic kidney disease: A prospective study and meta-analysis of published observational cohort studies

World Health Organization. Fact sheets. The top 10 causes of death. https://www.who.int/news-room/fact-sheets/detail/the-top-10-causes-of-death. Retrieved on 10 Sep 2021.

Couser WG, Remuzzi G, Mendis S, Tonelli M. The contribution of chronic kidney disease to the global burden of major noncommunicable diseases. Kidney Int. 2011;80(12):1258–70.

Article  Google Scholar 

Chronic Kidney Disease Prognosis Consortium, Matsushita K, van der Velde M, Astor BC, Woodward M, Levey AS, et al. Association of estimated glomerular filtration rate and albuminuria with all-cause and cardiovascular mortality in general population cohorts: a collaborative meta-analysis. Lancet. 2010;375(9731):2073-2081. https://doi.org/10.1016/S0140-6736(10)60674-5

Saran R, Li Y, Robinson B, Ayanian J, Balkrishnan R, Bragg-Gresham J, et al. US Renal Data System 2014 Annual Data Report: Epidemiology of Kidney Disease in the United States. Am J Kidney Dis. 2015;66(1 Suppl 1):S1–305. https://doi.org/10.1053/j.ajkd.2015.05.001.

Article  Google Scholar 

Kurella M, Lo JC, Chertow GM. Metabolic syndrome and the risk for chronic kidney disease among nondiabetic adults. J Am Soc Nephrol. 2005;16(7):2134–40.

Article  Google Scholar 

Collaboration GBDCKD. Global, regional, and national burden of chronic kidney disease, 1990-2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet. 2020;395(10225):709–33.

Article  Google Scholar 

Centers for Disease Control and Prevention. Chronic Kidney Disease Basics. https://www.cdc.gov/kidneydisease/basics.html. Assessed on 19 May 2022

Stump CS. Physical Activity in the Prevention of Chronic Kidney Disease. Cardiorenal Med. 2011;1(3):164–73.

Article  Google Scholar 

Chomistek AK, Cook NR, Flint AJ, Rimm EB. Vigorous-intensity leisure-time physical activity and risk of major chronic disease in men. Med Sci Sports Exerc. 2012;44(10):1898–905.

Article  Google Scholar 

Nystoriak MA, Bhatnagar A. Cardiovascular Effects and Benefits of Exercise. Front Cardiovasc Med. 2018;5:135. https://doi.org/10.3389/fcvm.2018.00135.

Article  Google Scholar 

Kunutsor SK, Makikallio TH, Seidu S, de Araujo CGS, Dey RS, Blom AW, et al. Physical activity and risk of venous thromboembolism: systematic review and meta-analysis of prospective cohort studies. Eur J Epidemiol. 2020;35(5):431–42.

Article  Google Scholar 

Kunutsor SK, Seidu S, Makikallio TH, Dey RS, Laukkanen JA. Physical activity and risk of atrial fibrillation in the general population: meta-analysis of 23 cohort studies involving about 2 million participants. Eur J Epidemiol. 2021;36(3):259–74.

Article  Google Scholar 

Wilund KR, Thompson S, Viana JL, Wang AY. Physical Activity and Health in Chronic Kidney Disease. Contrib Nephrol. 2021;199:43–55.

Article  Google Scholar 

Ross R, Blair SN, Arena R, Church TS, Despres JP, Franklin BA, et al. Importance of Assessing Cardiorespiratory Fitness in Clinical Practice: A Case for Fitness as a Clinical Vital Sign: A Scientific Statement From the American Heart Association. Circulation. 2016;134(24):e653–e99.

Article  Google Scholar 

Billingsley H, Rodriguez-Miguelez P, Del Buono MG, Abbate A, Lavie CJ, Carbone S. Lifestyle Interventions with a Focus on Nutritional Strategies to Increase Cardiorespiratory Fitness in Chronic Obstructive Pulmonary Disease, Heart Failure, Obesity, Sarcopenia, and Frailty. Nutrients. 2019;11(12):2849. https://doi.org/10.3390/nu11122849.

Article  Google Scholar 

Lin X, Zhang X, Guo J, Roberts CK, McKenzie S, Wu WC, et al. Effects of Exercise Training on Cardiorespiratory Fitness and Biomarkers of Cardiometabolic Health: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. J Am Heart Assoc. 2015;4(7):e002014.

Article  Google Scholar 

Kodama S, Saito K, Tanaka S, Maki M, Yachi Y, Asumi M, et al. Cardiorespiratory fitness as a quantitative predictor of all-cause mortality and cardiovascular events in healthy men and women: a meta-analysis. JAMA. 2009;301(19):2024–35. https://doi.org/10.1001/jama.2009.681.

Article  Google Scholar 

Laukkanen JA, Isiozor NM, Kunutsor SK. Objectively assessed cardiorespiratory fitness and all-cause mortality risk: an updated meta-analysis of 37 cohort studies involving 2,258,029 million participants. Mayo Clin Proc. 2022;97(6):1054–73. https://doi.org/10.1016/j.mayocp.2022.02.029.

Article  Google Scholar 

Mandsager K, Harb S, Cremer P, Phelan D, Nissen SE, Jaber W. Association of Cardiorespiratory Fitness With Long-term Mortality Among Adults Undergoing Exercise Treadmill Testing. JAMA Netw Open. 2018;1(6):e183605.

Article  Google Scholar 

DeFina LF, Barlow CE, Radford NB, Leonard D, Willis BL. The association between midlife cardiorespiratory fitness and later life chronic kidney disease: The Cooper Center Longitudinal Study. Prev Med. 2016;89:178–83. https://doi.org/10.1016/j.ypmed.2016.05.030.

Article  Google Scholar 

Lee J, Song RJ, Vasan RS, Xanthakis V. Association of Cardiorespiratory Fitness and Hemodynamic Responses to Submaximal Exercise Testing With the Incidence of Chronic Kidney Disease: The Framingham Heart Study. Mayo Clin Proc. 2020;95(6):1184–94.

Article  Google Scholar 

Paluch AE, Pool LR, Isakova T, Lewis CE, Mehta R, Schreiner PJ, et al. Association of Fitness With Racial Differences in Chronic Kidney Disease. Am J Prev Med. 2019;57(1):68–76.

Article  Google Scholar 

Kokkinos P, Faselis C, Myers J, Sui X, Zhang J, Tsimploulis A, et al. Exercise capacity and risk of chronic kidney disease in US veterans: a cohort study. Mayo Clin Proc. 2015;90(4):461–8.

Article  Google Scholar 

Kunutsor SK, Laukkanen T, Laukkanen JA. Cardiorespiratory Fitness is Associated with Reduced Risk of Respiratory Diseases in Middle-Aged Caucasian Men: A Long-Term Prospective Cohort Study. Lung. 2017;195(5):607–11.

Article  Google Scholar 

Laukkanen JA, Lavie CJ, Khan H, Kurl S, Kunutsor SK. Cardiorespiratory Fitness and the Risk of Serious Ventricular Arrhythmias: A Prospective Cohort Study. Mayo Clin Proc. 2019;94(5):833–41.

Article  Google Scholar 

Kunutsor SK, Laukkanen T, Laukkanen JA. Cardiorespiratory fitness and future risk of pneumonia: a long-term prospective cohort study. Ann Epidemiol. 2017;27(9):603–5.

Article  Google Scholar 

MacMahon S, Peto R, Cutler J, Collins R, Sorlie P, Neaton J, et al. Blood pressure, stroke, and coronary heart disease. Part 1, Prolonged differences in blood pressure: prospective observational studies corrected for the regression dilution bias. Lancet. 1990;335(8692):765–74.

Article  Google Scholar 

Salonen JT. Is there a continuing need for longitudinal epidemiologic research? The Kuopio Ischaemic Heart Disease Risk Factor Study. Ann Clin Res. 1988;20(1-2):46–50.

Google Scholar 

Kunutsor SK, Laukkanen JA. Serum zinc concentrations and incident hypertension: new findings from a population-based cohort study. J Hypertens. 2016;30(6):1055–61. https://doi.org/10.1097/HJH.0000000000000923.

Article  Google Scholar 

Lakka TA, Venalainen JM, Rauramaa R, Salonen R, Tuomilehto J, Salonen JT. Relation of leisure-time physical activity and cardiorespiratory fitness to the risk of acute myocardial infarction. N Engl J Med. 1994;330(22):1549–54. https://doi.org/10.1056/NEJM199406023302201.

Article  Google Scholar 

Kaminsky LA, Arena R, Myers J, Peterman JE, Bonikowske AR, Harber MP, et al. Updated Reference Standards for Cardiorespiratory Fitness Measured with Cardiopulmonary Exercise Testing: Data from the Fitness Registry and the Importance of Exercise National Database (FRIEND). Mayo Clin Proc. 2022;97(2):285–93.

Article  Google Scholar 

Kunutsor SK, Makikallio TH, Araujo CGS, Jae SY, Kurl S, Laukkanen JA. Cardiorespiratory fitness is not associated with risk of venous thromboembolism: a cohort study. Scand Cardiovasc J. 2019;53(5):255–8.

Article  Google Scholar 

Kunutsor SK, Laukkanen T, Laukkanen JA. Cardiorespiratory fitness is associated with reduced risk of future psychosis: A long-term prospective cohort study. Schizophr Res. 2018;192:473–4. https://doi.org/10.1016/j.schres.2017.04.042.

Article  Google Scholar 

Kunutsor SK, Makikallio TH, Araujo CGS, Jae SY, Kurl S, Laukkanen JA. Cardiorespiratory fitness is not associated with risk of venous thromboembolism: a cohort study. Scand Cardiovasc J. 2019;20:1–4.

Google Scholar 

Everson SA, Kaplan GA, Goldberg DE, Salonen JT. Anticipatory blood pressure response to exercise predicts future high blood pressure in middle-aged men. Hypertension. 1996;27(5):1059–64.

Article  Google Scholar 

Laukkanen JA, Kunutsor SK. Percentage of Age-Predicted Cardiorespiratory Fitness and Risk of Incident Hypertension: A PROSPECTIVE COHORT STUDY. J Cardiopulm Rehabil Prev. 2022;42(4):272–7.

Article  Google Scholar 

Salonen JT, Nyyssonen K, Korpela H, Tuomilehto J, Seppanen R, Salonen R. High stored iron levels are associated with excess risk of myocardial infarction in eastern Finnish men. Circulation. 1992;86(3):803–11. https://doi.org/10.1161/01.cir.86.3.803.

Article  Google Scholar 

Kunutsor SK, Jae SY, Makikallio TH, Kurl S, Laukkanen JA. High fitness levels offset the increased risk of chronic obstructive pulmonary disease due to low socioeconomic status: A cohort study. Respir Med. 2021;189:106647.

Article  Google Scholar 

Kunutsor SK, Jae SY, Makikallio TH, Laukkanen JA. High fitness levels attenuate the increased risk of heart failure due to low socioeconomic status: A cohort study. Eur J Clin Invest. 2022;14:e13744.

Google Scholar 

Kunutsor SK, Jae SY, Makikallio TH, Laukkanen JA. High Fitness Levels Attenuate the Increased Risk of Hypertension Due to Low Socioeconomic Status in Middle-Aged Men: A Cohort Study. J Cardiopulm Rehabil Prev. 2022;42(2):134–6.

Google Scholar 

Laukkanen JA, Laaksonen D, Lakka TA, Savonen K, Rauramaa R, Makikallio T, et al. Determinants of cardiorespiratory fitness in men aged 42 to 60 years with and without cardiovascular disease. The American journal of cardiology. 2009;103(11):1598–604.

Article  Google Scholar 

Kunutsor SK, Khan H, Laukkanen JA. Serum albumin concentration and incident type 2 diabetes risk: new findings from a population-based cohort study. Diabetologia. 2015;58(5):961–7.

Article  Google Scholar 

Taylor HL, Jacobs DR Jr, Schucker B, Knudsen J, Leon AS, Debacker G. A questionnaire for the assessment of leisure time physical activities. J Chronic Dis. 1978;31(12):741–55.

Article  Google Scholar 

Inker LA, Schmid CH, Tighiouart H, Eckfeldt JH, Feldman HI, Greene T, et al. Estimating glomerular filtration rate from serum creatinine and cystatin C. N Engl J Med. 2012;367(1):20–9.

Article  Google Scholar 

National KF. K/DOQI clinical practice guidelines for chronic kidney disease: evaluation, classification, and stratification. Am J Kidney Dis. 2002;39(2 Suppl 1):S1–266.

Google Scholar 

Therneau TM, Grambsch PM. Modeling Survival Data: Extending the Cox Model. New York, NY: Springer; 2000. p. 39–77.

Book  Google Scholar 

Fibrinogen Studies C, Wood AM, White I, Thompson SG, Lewington S, Danesh J. Regression dilution methods for meta-analysis: assessing long-term variability in plasma fibrinogen among 27,247 adults in 15 prospective studies. Int J Epidemiol. 2006;35(6):1570–8.

Article  Google Scholar 

Rosner B, Willett WC, Spiegelman D. Correction of logistic regression relative risk estimates and confidence intervals for systematic within-person measurement error. Stat Med. 1989;8(9):1051–69 discussion 71-3. https://doi.org/10.1002/sim.4780080905.

Article  Google Scholar 

Harrell FE Jr. Regression modeling strategies: With Applications to Linear Models, Logistic Regression, and Survival Analysis. Anonymous, editor. New York: Springer; 2001.

Book  Google Scholar 

Kunutsor SK, Laukkanen JA. Gamma-glutamyltransferase and risk of chronic kidney disease: A prospective cohort study. Clin Chim Acta. 2017;473:39–44.

Article  Google Scholar 

Groenwold RH, Klungel OH, Grobbee DE, Hoes AW. Selection of confounding variables should not be based on observed

留言 (0)

沒有登入
gif