Long-term impact of paediatric critical illness on the difference between epigenetic and chronological age in relation to physical growth

Vlasselaers D, Milants I, Desmet L, Wouters PJ, Vanhorebeek I, van den Heuvel I, et al. Intensive insulin therapy for patients in paediatric intensive care: a prospective, randomised controlled study. Lancet. 2009;373:547–56.

Article  CAS  Google Scholar 

Kachmar AG, Irving SY, Connolly CA, Curley MAQ. A systematic review of risk factors associated with cognitive impairment after pediatric critical illness. Pediatr Crit Care Med. 2018;19:e164–71.

Article  Google Scholar 

Verstraete S, Van den Berghe G, Vanhorebeek I. What’s new in the long-term neurodevelopmental outcome of critically ill children. Intensive Care Med. 2018;44:649–51.

Article  CAS  Google Scholar 

Jacobs A, Dulfer K, Eveleens RD, Hordijk J, Van Cleemput H, Verlinden I, et al. Long-term developmental effect of withholding parenteral nutrition in paediatric intensive care units: a 4-year follow-up of the PEPaNIC randomised controlled trial. Lancet Child Adolesc Health. 2020;4:503–14.

Article  Google Scholar 

Verstraete S, Verbruggen SC, Hordijk JA, Vanhorebeek I, Dulfer K, Guiza F, et al. Long-term developmental effects of withholding parenteral nutrition for 1 week in the paediatric intensive care unit: a 2-year follow-up of the PEPaNIC international, randomised, controlled trial. Lancet Respir Med. 2019;7:141–53.

Article  Google Scholar 

Verlinden I, Dulfer K, Vanhorebeek I, Guiza F, Hordijk JA, Wouters PJ, et al. Role of age of critically ill children at time of exposure to early or late parenteral nutrition in determining the impact hereof on long-term neurocognitive development: a secondary analysis of the PEPaNIC-RCT. Clin Nutr. 2021;40:1005–12.

Article  Google Scholar 

Guiza F, Vanhorebeek I, Verstraete S, Verlinden I, Derese I, Ingels C, et al. Effect of early parenteral nutrition during paediatric critical illness on DNA methylation as a potential mediator of impaired neurocognitive development: a pre-planned secondary analysis of the PEPaNIC international randomised controlled trial. Lancet Respir Med. 2020;8:288–303.

Article  Google Scholar 

Coppens G, Vanhorebeek I, Verlinden I, Derese I, Wouters PJ, Joosten K, et al. Assessment of aberrant DNA methylation two years after paediatric critical illness: a pre-planned secondary analysis of the international PEPaNIC trial Epigenetics. 2023.

Booth LN, Brunet A. The aging epigenome. Mol Cell. 2016;62:728–44.

Article  CAS  Google Scholar 

Sen P, Shah PP, Nativio R, Berger SL. Epigenetic mechanisms of longevity and aging. Cell. 2016;166:822–39.

Article  CAS  Google Scholar 

Hahn O, Gronke S, Stubbs TM, Ficz G, Hendrich O, Krueger F, et al. Dietary restriction protects from age-associated DNA methylation and induces epigenetic reprogramming of lipid metabolism. Genome Biol. 2017;18:56.

Article  Google Scholar 

Jones MJ, Goodman SJ, Kobor MS. DNA methylation and healthy human aging. Aging Cell. 2015;14:924–32.

Article  CAS  Google Scholar 

Kim Y, Huan T, Joehanes R, McKeown NM, Horvath S, Levy D, et al. Higher diet quality relates to decelerated epigenetic aging. Am J Clin Nutr. 2022;115:163–70.

Article  Google Scholar 

Sullivan J, Mirbahai L, Lord JM. Major trauma and acceleration of the ageing process. Ageing Res Rev. 2018;48:32–9.

Article  CAS  Google Scholar 

Horvath H, Horvath S. DNA methylation age of human tissues and cell types. Genome Biol. 2013;14:115.

Article  Google Scholar 

Hannum G, Guinney J, Zhao L, Zhang L, Hughes G, Sadda S, et al. Genome-wide methylation profiles reveal quantitative views of human aging rates. Mol Cell. 2013;49:359–67.

Article  CAS  Google Scholar 

McEwen LM, O’Donnell KJ, McGill MG, Edgar RD, Jones MJ, MacIsaac JL, et al. The PedBE clock accurately estimates DNA methylation age in pediatric buccal cells. Proc Natl Acad Sci U S A. 2020;117:23329–35.

Article  CAS  Google Scholar 

McEwen L. The PedBE (Pediatric-Buccal-Epigenetic) Clock GitHub. 2022. https://github.com/kobor-lab/Public-Scripts/. Accessed 08/11/2022.

Kling T, Wenger A, Caren H. DNA methylation-based age estimation in pediatric healthy tissues and brain tumors. Aging. 2020;12:21037–56.

Article  CAS  Google Scholar 

Fivez T, Kerklaan D, Mesotten D, Verbruggen S, Wouters PJ, Vanhorebeek I, et al. Early versus Late parenteral nutrition in critically ill children. N Engl J Med. 2016;374:1111–22.

Article  CAS  Google Scholar 

Fivez T, Kerklaan D, Verbruggen S, Vanhorebeek I, Verstraete S, Tibboel D, et al. Impact of withholding early parenteral nutrition completing enteral nutrition in pediatric critically ill patients (PEPaNIC trial): study protocol for a randomized controlled trial. Trials. 2015;16:9.

Article  Google Scholar 

Team RC. R: a language and environment for statistical computing R foundation for statistical computing; 2019. https://www.r-project.org.

LICMEpigenetics Package GitHub. 2022. https://github.com/LICMLeuven/LICMEpigenetics. Accessed 06/04/2022.

Du P, Zhang X, Huang CC, Jafari N, Kibbe WA, Hou L, et al. Comparison of Beta-value and M-value methods for quantifying methylation levels by microarray analysis. BMC Bioinform. 2010;11:587.

Article  CAS  Google Scholar 

Price ME, Cotton AM, Lam LL, Farré P, Emberly E, Brown CJ, et al. Additional annotation enhances potential for biologically-relevant analysis of the Illumina Infinium HumanMethylation450 BeadChip array. Epigenetics Chromatin. 2013;6:1–15.

Article  Google Scholar 

Lehne B, Drong AW, Loh M, Zhang WH, Scott WR, Tan ST, et al. A coherent approach for analysis of the Illumina HumanMethylation450 BeadChip improves data quality and performance in epigenome-wide association studies. Genome Biol. 2015;16:12.

Article  Google Scholar 

Teschendorff AE, Breeze CE, Zheng SC, Beck S. A comparison of reference-based algorithms for correcting cell-type heterogeneity in Epigenome-Wide Association Studies. BMC Bioinform. 2017;18:105.

Article  Google Scholar 

Austin PC, Tu JV. Bootstrap methods for developing predictive models. Am Stat. 2004;131–7.

Sauerbrei W, Schumacher M. A bootstrap resampling procedure for model building: application to the Cox regression model. Stat Med. 1992;11:2093–109.

Article  CAS  Google Scholar 

Fortin JP, Triche TJ, Hansen KD. Preprocessing, normalization and integration of the Illumina HumanMethylationEPIC array with minfi. Bioinformatics. 2017;33:558–60.

CAS  Google Scholar 

Hansen KD. IlluminaHumanMethylationEPICanno.ilm10b4.hg19: Annotation for Illumina's EPIC methylation arrays. 2017. https://bitbucket.com/kasperdanielhansen/Illumina_EPIC.

Wang J, Zhou WH. Epigenetic clocks in the pediatric population: when and why they tick? Chin Med J. 2021;134:2901–10.

Article  Google Scholar 

Horvath S, Raj K. DNA methylation-based biomarkers and the epigenetic clock theory of ageing. Nat Rev Genet. 2018;19:371–84.

Article  CAS  Google Scholar 

Breitling LP, Saum KU, Perna L, Schottker B, Holleczek B, Brenner H. Frailty is associated with the epigenetic clock but not with telomere length in a German cohort. Clin Epigenetics. 2016;8:21.

Article  Google Scholar 

Marioni RE, Shah S, McRae AF, Chen BH, Colicino E, Harris SE, et al. DNA methylation age of blood predicts all-cause mortality in later life. Genome Biol. 2015;16:25.

Article  Google Scholar 

Alisch RS, Barwick BG, Chopra P, Myrick LK, Satten GA, Conneely KN, et al. Age-associated DNA methylation in pediatric populations. Genome Res. 2012;22:623–32.

Article  CAS  Google Scholar 

Perez RF, Santamarina P, Tejedor JR, Urdinguio RG, Alvarez-Pitti J, Redon P, et al. Longitudinal genome-wide DNA methylation analysis uncovers persistent early-life DNA methylation changes. J Transl Med. 2019;17:15.

Article  Google Scholar 

Brook CGD, Clayton PE, Brown RS, Wiley I. Clinical pediatric endocrinology. 5th ed. Malden, Mass: Blackwell Pub; 2005.

Book  Google Scholar 

Rosenfield RL. Normal and premature adrenarche. Endocr Rev. 2021;42:783–814.

Article  Google Scholar 

Hulst JM, van Goudoever JB, Visser TJ, Tibboel D, Joosten KF. Hormone levels in children during the first week of ICU-admission: is there an effect of adequate feeding? Clin Nutr. 2006;25:154–62.

Article  CAS  Google Scholar 

Langouche L, Van den Berghe G. Hypothalamic-pituitary hormones during critical illness: a dynamic neuroendocrine response. Handb Clin Neurol. 2014;124:115–26.

Article  Google Scholar 

Van den Berghe G. On the neuroendocrinopathy of critical illness. Perspectives for feeding and novel treatments. Am J Respir Crit Care Med. 2016;194:1337–48.

Article  Google Scholar 

留言 (0)

沒有登入
gif