BAFF Promotes FLS Activation Through BAFFR-Mediated Non-canonical NF-κB Pathway and the Effects of CP-25

Ganesan R., M. Rasool. 2017. Fibroblast-like synoviocytes-dependent effector molecules as a critical mediator for rheumatoid arthritis: current status and future directions. International Reviews of Immunology 36(1): 20–30. https://doi.org/10.1080/08830185.2016.1269175

Zhang Q., J. Liu, M. Zhang, S. Wei, R. Li, Y. Gao, W. Peng, C. Wu. 2019. Apoptosis induction of fibroblast-like synoviocytes is an important molecular-mechanism for herbal medicine along with its active components in treating rheumatoid arthritis. Biomolecules 9(12). https://doi.org/10.3390/biom9120795

Lee J.W., J. Lee, S.H. Um, E.Y. Moon. 2017. Synovial cell death is regulated by TNF-alpha-induced expression of B-cell activating factor through an ERK-dependent increase in hypoxia-inducible factor-1alpha. Cell Death Disease 8(4): e2727. https://doi.org/10.1038/cddis.2017.26

Nygaard G., G.S. Firestein. 2020. Restoring synovial homeostasis in rheumatoid arthritis by targeting fibroblast-like synoviocytes. Nature Reviews Rheumatology 16(6): 316–33. https://doi.org/10.1038/s41584-020-0413-5

de Oliveira P.G., M. Farinon, E. Sanchez-Lopez, S. Miyamoto, M. Guma. 2019. Fibroblast-like synoviocytes glucose metabolism as a therapeutic target in rheumatoid arthritis. Frontiers in Immunology 10:1743. https://doi.org/10.3389/fimmu.2019.01743

Bottini N., G.S. Firestein. 2013. Duality of fibroblast-like synoviocytes in RA: passive responders and imprinted aggressors. Nature Reviews Rheumatology 9(1): 24–33. https://doi.org/10.1038/nrrheum.2012.190

Sabeh F., D. Fox, S.J. Weiss. 2010. Membrane-type I matrix metalloproteinase-dependent regulation of rheumatoid arthritis synoviocyte function. Journal of Immunology 184(11): 6396–406. https://doi.org/10.4049/jimmunol.0904068

Tolboom T.C., E. Pieterman, W.H. van der Laan, R.E. Toes, A.L. Huidekoper, R.G. Nelissen, F.C. Breedveld, T.W. Huizinga. 2002. Invasive properties of fibroblast-like synoviocytes: correlation with growth characteristics and expression of MMP-1, MMP-3, and MMP-10. Annals of Rheumatic Diseases 61(11): 975–80. https://doi.org/10.1136/ard.61.11.975

Bartok B., G.S. Firestein. 2010. Fibroblast-like synoviocytes: key effector cells in rheumatoid arthritis. Immunology Reviews 233(1): 233–55. https://doi.org/10.1111/j.0105-2896.2009.00859.x

Gowhari Shabgah A., Z. Shariati-Sarabi, J. Tavakkol-Afshari, A. Ghasemi, M. Ghoryani, M. Mohammadi. 2020. A significant decrease of BAFF, APRIL, and BAFF receptors following mesenchymal stem cell transplantation in patients with refractory rheumatoid arthritis. Gene 732:144336. https://doi.org/10.1016/j.gene.2020.144336

Kayagaki N., M. Yan, D. Seshasayee, H. Wang, W. Lee, D.M. French, I.S. Grewal, A.G. Cochran, N.C. Gordon, J. Yin, M.A. Starovasnik, V.M. Dixit. 2002. BAFF/BLyS receptor 3 binds the B cell survival factor BAFF ligand through a discrete surface loop and promotes processing of NF-kappaB2. Immunity 17(4): 515–24. https://doi.org/10.1016/s1074-7613(02)00425-9

Ferraccioli G., E. Gremese. 2017. B cell activating factor (BAFF) and BAFF receptors: fakes and facts. Clinical and Experimental Immunology 190(3): 291–2. https://doi.org/10.1111/cei.13039

Shabgah A.G., Z. Shariati-Sarabi, J. Tavakkol-Afshari, M. Mohammadi. 2019. The role of BAFF and APRIL in rheumatoid arthritis. Journal of Cellular Physiology 234(10): 17050–63. https://doi.org/10.1002/jcp.28445

Morais S.A., A. Vilas-Boas, D.A. Isenberg. 2015. B-cell survival factors in autoimmune rheumatic disorders. Therapeutic Advances in Musculoskeletal Disease 7(4): 122–51. https://doi.org/10.1177/1759720x15586782

Nakayamada S., Y. Tanaka. 2016. BAFF- and APRIL-targeted therapy in systemic autoimmune diseases. Inflammation and Regeneration 36: 6. https://doi.org/10.1186/s41232-016-0015-4

Samy E., S. Wax, B. Huard, H. Hess, P. Schneider. 2017. Targeting BAFF and APRIL in systemic lupus erythematosus and other antibody-associated diseases. International Reviews of Immunology 36(1): 3–19. https://doi.org/10.1080/08830185.2016.1276903

Smolen J.S., M.E. Weinblatt, D. van der Heijde, W.F. Rigby, R. van Vollenhoven, C.O. Bingham, 3rd, M. Veenhuizen, A. Gill, F. Zhao, W.J. Komocsar, P.Y. Berclaz, R. Ortmann, C. Lee. 2015. Efficacy and safety of tabalumab, an anti-B-cell-activating factor monoclonal antibody, in patients with rheumatoid arthritis who had an inadequate response to methotrexate therapy: results from a phase III multicentre, randomised, double-blind study. Annals of Rheumatic Diseases 74(8): 1567–70. https://doi.org/10.1136/annrheumdis-2014-207090

Distler A., L. Deloch, J. Huang, C. Dees, N.Y. Lin, K. Palumbo-Zerr, C. Beyer, A. Weidemann, O. Distler, G. Schett, J.H. Distler. 2013. Inactivation of tankyrases reduces experimental fibrosis by inhibiting canonical Wnt signalling. Annals of Rheumatic Diseases 72(9): 1575–80. https://doi.org/10.1136/annrheumdis-2012-202275

Yang X.Z., W. Wei. 2020. CP-25, a compound derived from paeoniflorin: research advance on its pharmacological actions and mechanisms in the treatment of inflammation and immune diseases. Acta Pharmacologica Sinica 41(11): 1387–94. https://doi.org/10.1038/s41401-020-00510-6

Tang H., Y.J. Wu, F. Xiao, B. Wang, J. Asenso, Y. Wang, W. Sun, C. Wang, W. Wei. 2019. Regulation of CP-25 on P-glycoprotein in synoviocytes of rats with adjuvant arthritis. Biomedicine and Pharmacotherapy 119: 109432. https://doi.org/10.1016/j.biopha.2019.109432

Chen J., Y. Wang, H. Wu, S. Yan, Y. Chang, W. Wei. 2018. A modified compound from Paeoniflorin, CP-25, suppressed immune responses and synovium inflammation in collagen-induced arthritis mice. Frontiers in Pharmacology 9: 563. https://doi.org/10.3389/fphar.2018.00563

Chang Y., X. Jia, F. Wei, C. Wang, X. Sun, S. Xu, X. Yang, Y. Zhao, J. Chen, H. Wu, L. Zhang, W. Wei. 2016. CP-25, a novel compound, protects against autoimmune arthritis by modulating immune mediators of inflammation and bone damage. Scientific Reports 6: 26239. https://doi.org/10.1038/srep26239

Zhang F., J.L. Shu, Y. Li, Y.J. Wu, X.Z. Zhang, L. Han, X.Y. Tang, C. Wang, Q.T. Wang, J.Y. Chen, Y. Chang, H.X. Wu, L.L. Zhang, W. Wei. 2017. CP-25, A novel anti-inflammatory and immunomodulatory drug, inhibits the functions of activated human B cells through regulating BAFF and TNF-alpha signaling and comparative efficacy with biological agents. Frontiers in Pharmacology 8: 933. https://doi.org/10.3389/fphar.2017.00933

Li H., A. Wan. 2013. Apoptosis of rheumatoid arthritis fibroblast-like synoviocytes: possible roles of nitric oxide and the thioredoxin 1. Mediators Inflammation p. 953462. https://doi.org/10.1155/2013/953462

Chen M., X. Lin, Y. Liu, Q. Li, Y. Deng, Z. Liu, D. Brand, Z. Guo, X. He, B. Ryffel, S.G. Zheng. 2014. The function of BAFF on T helper cells in autoimmunity. Cytokine & Growth Factor Reviews 25(3): 301–5. https://doi.org/10.1016/j.cytogfr.2013.12.011

Hu S., R. Wang, M. Zhang, K. Liu, J. Tao, Y. Tai, W. Zhou, Q. Wang, W. Wei. 2019. BAFF promotes T cell activation through the BAFF-BAFF-R-PI3K-Akt signaling pathway. Biomedicine & Pharmacotherapy 114: 108796. https://doi.org/10.1016/j.biopha.2019.108796

Smulski C.R., H. Eibel. 2018. BAFF and BAFF-receptor in B cell selection and survival. Frontiers in Immunology 9: 2285. https://doi.org/10.3389/fimmu.2018.02285

Jia X., F. Wei, X. Sun, Y. Chang, S. Xu, X. Yang, C. Wang, W. Wei. 2016. CP-25 attenuates the inflammatory response of fibroblast-like synoviocytes co-cultured with BAFF-activated CD4(+) T cells. Journal of Ethnopharmacology 189: 194–201. https://doi.org/10.1016/j.jep.2016.05.034

Han C., Y. Li, Y. Zhang, Y. Wang, D. Cui, T. Luo, Y. Zhang, Q. Liu, H. Li, C. Wang, D. Xu, Y. Ma, W. Wei. 2021. Targeted inhibition of GRK2 kinase domain by CP-25 to reverse fibroblast-like synoviocytes dysfunction and improve collagen-induced arthritis in rats. Acta Pharmaceutica Sinica B 11(7): 1835–52. https://doi.org/10.1016/j.apsb.2021.01.015

Li Y., M.Y. Jiang, J.Y. Chen, Z.W. Xu, J.W. Zhang, T. Li, L.L. Zhang, W. Wei. 2021. CP-25 exerts therapeutic effects in mice with dextran sodium sulfate-induced colitis by inhibiting GRK2 translocation to downregulate the TLR4-NF-kappaB-NLRP3 inflammasome signaling pathway in macrophages. IUBMB Life 73(12): 1406–22. https://doi.org/10.1002/iub.2564

留言 (0)

沒有登入
gif