Collagen Triple Helix Repeat Containing 1 Deficiency Protects Against Airway Remodeling and Inflammation in Asthma Models In Vivo and In Vitro

Papi, A., C. Brightling, S.E. Pedersen, and H.K. Reddel. 2018. Asthma. Lancet (London, England) 391: 783–800.

Article  Google Scholar 

Holgate, S.T., S. Wenzel, D.S. Postma, S.T. Weiss, H. Renz, and P.D. Sly. 2015. Asthma. Nature Reviews Disease Primers 1: 15025.

Article  Google Scholar 

Wang, K.C.W., G.M. Donovan, A.L. James, and P.B. Noble. 2020. Asthma: Pharmacological degradation of the airway smooth muscle layer. The International Journal of Biochemistry & Cell Biology 126: 105818.

Article  CAS  Google Scholar 

Finotto, S. 2019. Resolution of allergic asthma. Seminars In Immunopathology 41: 665–674.

Article  Google Scholar 

Morimoto, Y., K. Hirahara, M. Kiuchi, T. Wada, T. Ichikawa, T. Kanno, M. Okano, K. Kokubo, A. Onodera, D. Sakurai, Y. Okamoto, and T. Nakayama. 2018. Amphiregulin-producing pathogenic memory T helper 2 cells instruct eosinophils to secrete osteopontin and facilitate airway fibrosis. Immunity 49: 134-150.e6.

Article  CAS  Google Scholar 

Hough, K.P., M.L. Curtiss, T.J. Blain, R.-M. Liu, J. Trevor, J.S. Deshane, and V.J. Thannickal. 2020. Airway remodeling in asthma. Frontiers In Medicine 7: 191.

Article  Google Scholar 

Lambrecht, B.N., and H. Hammad. 2015. The immunology of asthma. Nature immunology 16: 45–56.

Article  CAS  Google Scholar 

Sun, Z., N. Ji, Q. Ma, R. Zhu, Z. Chen, Z. Wang, Y. Qian, C. Wu, F. Hu, M. Huang, and M. Zhang. 2020. Epithelial-mesenchymal transition in asthma airway remodeling is regulated by the IL-33/CD146 axis. Frontiers In Immunology 11: 1598.

Article  CAS  Google Scholar 

Riemma, M.A., I. Cerqua, B. Romano, E. Irollo, A. Bertolino, R. Camerlingo, E. Granato, G. Rea, S. Scala, M. Terlizzi, G. Spaziano, R. Sorrentino, B. D’Agostino, F. Roviezzo, and G. Cirino. 2022. Sphingosine-1-phosphate/TGF-β axis drives epithelial mesenchymal transition in asthma-like disease. British Journal of Pharmacology 179: 1753–1768.

Article  CAS  Google Scholar 

Guo, Y., C. Jiang, S. Yao, L. Ma, H. Zhang, X. Wang, S. Xu, and Z. Cao. 2021. CTHRC1 knockdown promotes inflammatory responses partially by p38 MAPK activation in human periodontal ligament cells. Inflammation 44: 1831–1842.

Article  CAS  Google Scholar 

Tsukui, T., K.H. Sun, J.B. Wetter, J.R. Wilson-Kanamori, L.A. Hazelwood, and N.C. Henderson. 2020. Collagen-producing lung cell atlas identifies multiple subsets with distinct localization and relevance to fibrosis. Nature Communications 11: 1920.

Article  CAS  Google Scholar 

Jin, X.-F., H. Li, S. Zong, and H.-Y. Li. 2016. Knockdown of collagen triple helix repeat containing-1 inhibits the proliferation and epithelial-to-mesenchymal transition in renal cell carcinoma cells. Oncology Research 24: 477–485.

Article  Google Scholar 

Wang, C., Z. Li, F. Shao, X. Yang, X. Feng, S. Shi, Y. Gao, and J. He. 2017. High expression of collagen triple helix repeat containing 1 (CTHRC1) facilitates progression of oesophageal squamous cell carcinoma through MAPK/MEK/ERK/FRA-1 activation. Journal of Experimental Clinical Cancer Research 36: 84.

Article  Google Scholar 

Jiang, N., Y. Cui, J. Liu, X. Zhu, H. Wu, Z. Yang, and Z. Ke. 2016. Multidimensional roles of collagen triple helix repeat containing 1 (CTHRC1) in malignant cancers. Journal of Cancer 7: 2213–2220.

Article  CAS  Google Scholar 

Mei, D., Y. Zhu, L. Zhang, and W. Wei. 2020. The role of CTHRC1 in regulation of multiple signaling and tumor progression and metastasis. Mediators of Inflammation 2020: 9578701.

Article  Google Scholar 

Tsukui, T., K.-H. Sun, J.B. Wetter, J.R. Wilson-Kanamori, L.A. Hazelwood, N.C. Henderson, T.S. Adams, J.C. Schupp, S.D. Poli, I.O. Rosas, N. Kaminski, M.A. Matthay, P.J. Wolters, and D. Sheppard. 2020. Collagen-producing lung cell atlas identifies multiple subsets with distinct localization and relevance to fibrosis. Nature Communications 11: 1920.

Article  CAS  Google Scholar 

LeClair, R.J., T. Durmus, Q. Wang, P. Pyagay, A. Terzic, and V. Lindner. 2007. Cthrc1 is a novel inhibitor of transforming growth factor-beta signaling and neointimal lesion formation. Circulation research 100: 826–833.

Article  CAS  Google Scholar 

Li, J., Y. Wang, M. Ma, S. Jiang, X. Zhang, Y. Zhang, X. Yang, C. Xu, G. Tian, Q. Li, Y. Wang, L. Zhu, H. Nie, M. Feng, Q. Xia, J. Gu, Q. Xu, and Z. Zhang. 2019. Autocrine CTHRC1 activates hepatic stellate cells and promotes liver fibrosis by activating TGF-β signaling. eBioMedicine 40: 43–55.

Article  CAS  Google Scholar 

Myngbay, A., and L. Manarbek. 2021. The role of collagen triple helix repeat-containing 1 protein (CTHRC1) in rheumatoid arthritis. International Journal of Molecular Sciences 22: 2426.

Article  CAS  Google Scholar 

Smith, L.C., S. Moreno, L. Robertson, S. Robinson, K. Gant, A.J. Bryant, and T. Sabo-Attwood. 2018. Transforming growth factor beta1 targets estrogen receptor signaling in bronchial epithelial cells. Respiratory Research 19: 160.

Article  Google Scholar 

Ni, S., F. Ren, M. Xu, C. Tan, W. Weng, Z. Huang, W. Sheng, and D. Huang. 2018. CTHRC1 overexpression predicts poor survival and enhances epithelial-mesenchymal transition in colorectal cancer. Cancer Medicine 7: 5643–5654.

Article  CAS  Google Scholar 

Tai, Y., Y. Zhu, D. Mei, H. Wang, Q. Yu, C. Hong, X. Cai, L. Xu, J. Ge, F. Liang, C. Jiang, Z. Xue, L. Hu, R. Liu, T. Zhang, P. Wang, X. Zhang, F. Zhang, W. Wei, and L. Zhang. 2021. IgD promotes pannus formation by activating Wnt5A-Fzd5-CTHRC1-NF-κB signaling pathway in FLS of CIA rats and the regulation of IgD-Fc-Ig fusion protein. International immunopharmacology 101: 108261.

Article  CAS  Google Scholar 

Jin, Y.R., J.P. Stohn, Q. Wang, K. Nagano, R. Baron, M.L. Bouxsein, C.J. Rosen, V.A. Adarichev, and V. Lindner. 2017. Inhibition of osteoclast differentiation and collagen antibody-induced arthritis by CTHRC1. Bone 97: 153–167.

Article  CAS  Google Scholar 

Myngbay, A., Y. Bexeitov, A. Adilbayeva, Z. Assylbekov, B.P. Yevstratenko, R.M. Aitzhanova, B. Matkarimov, V.A. Adarichev, and J. Kunz. 2019. CTHRC1: A new candidate biomarker for improved rheumatoid arthritis diagnosis. Frontiers In Immunology 10: 1353.

Article  CAS  Google Scholar 

Myou, S., A.R. Leff, S. Myo, E. Boetticher, J. Tong, A.Y. Meliton, J. Liu, N.M. Munoz, and X. Zhu. 2003. Blockade of inflammation and airway hyperresponsiveness in immune-sensitized mice by dominant-negative phosphoinositide 3-kinase-TAT. The Journal of Experimental Medicine 198: 1573–1582.

Article  CAS  Google Scholar 

Pu, Y., Y. Liu, S. Liao, S. Miao, L. Zhou, and L. Wan. 2018. Azithromycin ameliorates OVA-induced airway remodeling in Balb/c mice via suppression of epithelial-to-mesenchymal transition. International Immunopharmacology 58: 87–93.

Article  CAS  Google Scholar 

Wu, L.Q., R.L. Wang, Y.R. Dai, F.Q. Li, H.Y. Wu, S.S. Yan, L.R. Wang, L.D. Jin, and X.D. Xia. 2015. Roxithromycin suppresses airway remodeling and modulates the expression of caveolin-1 and phospho-p42/p44MAPK in asthmatic rats. International immunopharmacology 24: 247–255.

Article  CAS  Google Scholar 

Loh, C.-Y., J.Y. Chai, T.F. Tang, W.F. Wong, G. Sethi, M.K. Shanmugam, P.P. Chong, and C.Y. Looi. 2019. The E-cadherin and N-cadherin switch in epithelial-to-mesenchymal transition: Signaling, therapeutic implications, and challenges. Cells 8: 1118.

Article  CAS  Google Scholar 

Lee, H.-W., C.C. Jose, and S. Cuddapah. 2021. Epithelial-mesenchymal transition: Insights into nickel-induced lung diseases. Seminars In Cancer Biology 76: 99–109.

Article  CAS  Google Scholar 

Banno, A., A.T. Reddy, S.P. Lakshmi, and R.C. Reddy. 2020. Bidirectional interaction of airway epithelial remodeling and inflammation in asthma. Clinical Science 134: 1063–1079.

Article  CAS  Google Scholar 

Gubernatorova, E.O., O.A. Namakanova, A.V. Tumanov, M.S. Drutskaya, and S.A. Nedospasov. 2019. Mouse models of severe asthma for evaluation of therapeutic cytokine targeting. Immunology Letters 207: 73–83.

Article  CAS  Google Scholar 

Bates, J.H.T., M. Rincon, and C.G. Irvin. 2009. Animal models of asthma. American Journal of Physiology. Lung Cellular and Molecular Physiology 297: L401–L410.

Article  CAS  Google Scholar 

Komi, Elieh Ali, and D. and L. Bjermer. 2019. Mast cell-mediated orchestration of the immune responses in human allergic asthma: Current insights. Clinical Reviews in Allergy & Immunology 56: 234–247.

Article  Google Scholar 

Jia, A., Y. Wang, W. Sun, B. Xiao, L. Mu, Y. Wei, L. Xu, C. Peng, D. Zhang, H. Shen, and X. Xiang. 2017. Comparison of the roles of house dust mite allergens, ovalbumin and lipopolysaccharides in the sensitization of mice to establish a model of severe neutrophilic asthma. Experimental and Therapeutic Medicine 14: 2126–2134.

Article  CAS  Google Scholar 

Liu, Y., L. Wei, C. He, R. Chen, and L. Meng. 2021. Lipoxin A4 inhibits ovalbumin-induced airway inflammation and airway remodeling in a mouse model of asthma. Chemico-biological Interactions 349: 109660.

Article  CAS  Google Scholar 

Al-Muhsen, S., J.R. Johnson, and Q. Hamid. 2011. Remodeling in asthma. The Journal of Allergy and Clinical Immunology 128: 451–462.

Article  Google Scholar 

Jin, J., and S. Togo. 2019. Pirfenidone attenuates lung fibrotic fibroblast responses to transforming growth factor-β1. Respiratory Research 20: 119.

Article  Google Scholar 

Bian, Z., Q. Miao, W. Zhong, H. Zhang, Q. Wang, Y. Peng, X. Chen, C. Guo, L. Shen, F. Yang, J. Xu, D. Qiu, J. Fang, S. Friedman, R. Tang, M.E. Gershwin, and X. Ma. 2015. Treatment of cholestatic fibrosis by altering gene expression of Cthrc1: Implications for autoimmune and non-autoimmune liver disease. Journal of Autoimmunity 63: 76–87.

Article  CAS  Google Scholar 

Shen, Z., T. Su, J. Chen, Z. Xie, and J. Li. 2021. Collagen triple helix repeat containing-1 exerts antifibrotic effects on human skin fibroblast and bleomycin-induced dermal fibrosis models. Annals of Translational Medicine 9: 801.

Article  CAS  Google Scholar 

Pain, M., O. Bermudez, P. Lacoste, P.J. Royer, K. Botturi, A. Tissot, S. Brouard, O. Eickelberg, and A. Magnan. 2014. Tissue remodelling in chronic bronchial diseases: From the epithelial to mesenchymal phenotype. European Respiratory Review 23: 118–130.

Article  Google Scholar 

Yang, Z.C., Z.H. Qu, M.J. Yi, Y.C. Shan, N. Ran, L. Xu, and X.J. Liu. 2019. MiR-448-5p inhibits TGF-β1-induced epithelial-mesenchymal transition and pulmonary fibrosis by targeting Six1 in asthma. Journal of cellular physiology 234: 8804–8814.

Article  CAS  Google Scholar 

Fan, Q., and Y. Jian. 2020. MiR-203a-3p regulates TGF-β1-induced epithelial-mesenchymal transition (EMT) in asthma by regulating Smad3 pathway through SIX1. Bioscience reports 40: BSR20192645.

留言 (0)

沒有登入
gif