Special considerations in the design and implementation of pediatric otoprotection trials

Ghosh S. Cisplatin: the first metal based anticancer drug. Bioorg Chem. 2019;88:102925.

Article  CAS  Google Scholar 

Brock PR, et al. Platinum-induced ototoxicity in children: a consensus review on mechanisms, predisposition, and protection, including a new International Society of Pediatric Oncology Boston ototoxicity scale. J Clin Oncol. 2012;30(19):2408–17.

Article  CAS  Google Scholar 

van As JW, van den Berg H, van Dalen EC. Platinum-induced hearing loss after treatment for childhood cancer. Cochrane Database Syst Rev. 2016;(8):CD010181.

Moke DJ, et al. Prevalence and risk factors for cisplatin-induced hearing loss in children, adolescents, and young adults: a multi-institutional North American cohort study. Lancet Child Adolesc Health. 2021;5(4):274–83.

Article  CAS  Google Scholar 

Knight KR, Kraemer DF, Neuwelt EA. Ototoxicity in children receiving platinum chemotherapy: underestimating a commonly occurring toxicity that may influence academic and social development. J Clin Oncol. 2005;23(34):8588–96.

Article  Google Scholar 

Gurney JG, et al. Hearing loss, quality of life, and academic problems in long-term neuroblastoma survivors: a report from the Children’s Oncology Group. Pediatrics. 2007;120(5):e1229–36.

Article  Google Scholar 

Landier W, et al. Ototoxicity in children with high-risk neuroblastoma: prevalence, risk factors, and concordance of grading scales–a report from the Children’s Oncology Group. J Clin Oncol. 2014;32(6):527–34.

Article  Google Scholar 

Brinkman TM, et al. Treatment-induced hearing loss and adult social outcomes in survivors of childhood CNS and non-CNS solid tumors: results from the St. Jude Lifetime Cohort Study Cancer. 2015;121(22):4053–61.

CAS  Google Scholar 

Orgel E, et al. Effect of sensorineural hearing loss on neurocognitive functioning in pediatric brain tumor survivors. Pediatr Blood Cancer. 2016;63(3):527–34.

Article  CAS  Google Scholar 

Bass JK, et al. Association of hearing impairment with neurocognition in survivors of childhood cancer. JAMA Oncol. 2020;6(9):1363–71.

Article  Google Scholar 

Sininger YS, Grimes A, Christensen E. Auditory development in early amplified children: factors influencing auditory-based communication outcomes in children with hearing loss. Ear Hear. 2010;31(2):166–85.

Article  Google Scholar 

Frisina RD, et al. Comprehensive audiometric analysis of hearing impairment and tinnitus after cisplatin-based chemotherapy in survivors of adult-onset cancer. J Clin Oncol. 2016;34(23):2712–20.

Article  CAS  Google Scholar 

The Voice of the Patient Hyattsville, MD2018 [updated September 13, 2018. Available from: https://www.fda.gov/media/132522/download

Orgel E, et al. Assessment of provider perspectives on otoprotection research for children and adolescents: a Children’s Oncology Group Cancer Control and Supportive Care Committee survey. Pediatr Blood Cancer. 2020;67(11):e28647.

Article  CAS  Google Scholar 

Mukherjea D, et al. Strategies to reduce the risk of platinum containing antineoplastic drug-induced ototoxicity. Expert Opin Drug Metab Toxicol. 2020;16(10):965–82.

Article  CAS  Google Scholar 

Steyger PS. Mechanisms of aminoglycoside- and cisplatin-induced ototoxicity. Am J Audiol. 2021;30(3S):887–900.

Article  Google Scholar 

Park MS, De Leon M, Devarajan P. Cisplatin induces apoptosis in LLC-PK1 cells via activation of mitochondrial pathways. J Am Soc Nephrol. 2002;13(4):858–65.

Article  CAS  Google Scholar 

Bragado P, et al. Apoptosis by cisplatin requires p53 mediated p38alpha MAPK activation through ROS generation. Apoptosis. 2007;12(9):1733–42.

Article  CAS  Google Scholar 

Sheth S, et al. Mechanisms of cisplatin-induced ototoxicity and otoprotection. Front Cell Neurosci. 2017;11:338.

Article  Google Scholar 

Yu W, et al. Cisplatin generates oxidative stress which is accompanied by rapid shifts in central carbon metabolism. Sci Rep. 2018;8(1):4306.

Article  Google Scholar 

Dasari S, Tchounwou PB. Cisplatin in cancer therapy: molecular mechanisms of action. Eur J Pharmacol. 2014;740:364–78.

Article  CAS  Google Scholar 

Guthrie OW. DNA repair proteins and telomerase reverse transcriptase in the cochlear lateral wall of cisplatin-treated rats. J Chemother. 2009;21(1):74–9.

Article  CAS  Google Scholar 

Laurell G, et al. Effects of a single high dose of cisplatin on the melanocytes of the stria vascularis in the guinea pig. Audiol Neurootol. 2007;12(3):170–8.

Article  CAS  Google Scholar 

Slattery EL, et al. Cisplatin exposure damages resident stem cells of the mammalian inner ear. Dev Dyn. 2014;243(10):1328–37.

Article  CAS  Google Scholar 

Breglio AM, et al. Cisplatin is retained in the cochlea indefinitely following chemotherapy. Nat Commun. 2017;8(1):1654.

Article  Google Scholar 

Yancey A, et al. Risk factors for cisplatin-associated ototoxicity in pediatric oncology patients. Pediatr Blood Cancer. 2012;59(1):144–8.

Article  Google Scholar 

Li Y, Womer RB, Silber JH. Predicting cisplatin ototoxicity in children: the influence of age and the cumulative dose. Eur J Cancer. 2004;40(16):2445–51.

Article  CAS  Google Scholar 

Clemens E, et al. Genetic variation of cisplatin-induced ototoxicity in non-cranial-irradiated pediatric patients using a candidate gene approach: the International PanCareLIFE study. Pharmacogenomics J. 2020;20(2):294–305.

Article  CAS  Google Scholar 

Drogemoller BI, et al. Pharmacogenomics of cisplatin-induced ototoxicity: successes, shortcomings, and future avenues of research. Clin Pharmacol Ther. 2019;106(2):350–9.

Article  Google Scholar 

Meijer AJM, et al. TCERG1L allelic variation is associated with cisplatin-induced hearing loss in childhood cancer, a PanCareLIFE study. NPJ Precis Oncol. 2021;5(1):64.

Article  CAS  Google Scholar 

Langer T, et al. Usefulness of current candidate genetic markers to identify childhood cancer patients at risk for platinum-induced ototoxicity: results of the European PanCareLIFE cohort study. Eur J Cancer. 2020;138:212–24.

Article  CAS  Google Scholar 

Lewis MJ, et al. Ototoxicity in children treated for osteosarcoma. Pediatr Blood Cancer. 2009;52(3):387–91.

Article  Google Scholar 

Qaddoumi I, et al. Carboplatin-associated ototoxicity in children with retinoblastoma. J Clin Oncol. 2012;30(10):1034–41.

Article  CAS  Google Scholar 

Parsons SK, et al. Severe ototoxicity following carboplatin-containing conditioning regimen for autologous marrow transplantation for neuroblastoma. Bone Marrow Transplant. 1998;22(7):669–74.

Article  CAS  Google Scholar 

Walker DA, et al. Enhanced cis-platinum ototoxicity in children with brain tumours who have received simultaneous or prior cranial irradiation. Med Pediatr Oncol. 1989;17(1):48–52.

Article  CAS  Google Scholar 

Kohn S, et al. Ototoxicity resulting from combined administration of cisplatin and gentamicin. Laryngoscope. 1997;107(3):407–8.

Article  CAS  Google Scholar 

Lin X, et al. Experimental animal models of drug-induced sensorineural hearing loss: a narrative review. Ann Transl Med. 2021;9(17):1393.

Article  CAS  Google Scholar 

Todd DW, et al. A fully automated high-throughput zebrafish behavioral ototoxicity assay. Zebrafish. 2017;14(4):331–42.

Article  CAS  Google Scholar 

Hazlitt RA, et al. Development of second-generation CDK2 inhibitors for the prevention of cisplatin-induced hearing loss. J Med Chem. 2018;61(17):7700–9.

Article  CAS  Google Scholar 

Ingersoll MA, et al. BRAF inhibition protects against hearing loss in mice. Sci Adv. 2020;6(49).

Teitz T, et al. Development of cell-based high-throughput chemical screens for protection against cisplatin-induced ototoxicity. Methods Mol Biol. 2016;1427:419–30.

Article  CAS  Google Scholar 

Fernandez K, et al. An optimized, clinically relevant mouse model of cisplatin-induced ototoxicity. Hear Res. 2019;375:66–74.

Article  CAS  Google Scholar 

Wong HH, Halford S. Dose-limiting toxicity and maximum tolerated dose: still fit for purpose? Lancet Oncol. 2015;16(13):1287–8.

Article  Google Scholar 

Filloon TG. Estimating the minimum therapeutically effective dose of a compound via regression modelling and percentile estimation. Stat Med. 1995;14(9–10):925–32; discussion 33.

Fraisse J, et al. Optimal biological dose: a systematic review in cancer phase I clinical trials. BMC Cancer. 2021;21(1):60.

Article  CAS  Google Scholar 

Muldoon LL, et al. Delayed administration of sodium thiosulfate in animal models reduces platinum ototoxicity without reduction of antitumor activity. Clin Cancer Res. 2000;6(1):309–15.

CAS  Google Scholar 

Muldoon LL, et al. N-acetylcysteine chemoprotection without decreased cisplatin antitumor efficacy in pediatric tumor models. J Neurooncol. 2015;121(3):433–40.

Article  CAS  Google Scholar 

Wang X, et al. Dose-dependent sustained release of dexamethasone in inner ear cochlear fluids using a novel local delivery approach. Audiol Neurootol. 2009;14(6):393–401.

Article  CAS  Google Scholar 

Al Shoyaib A, Archie SR, Karamyan VT. Intraperitoneal route of drug administration: should it be used in experimental animal studies? Pharm Res. 2019;37(1):12.

Article  Google Scholar 

Harned TM, et al. Sodium thiosulfate administered six hours after cisplatin does not compromise antineuroblastoma activity. Clin Cancer Res. 2008;14(2):533–40.

Article  CAS  Google Scholar 

Neuwelt EA, et al. Bone marrow chemoprotection without compromise of chemotherapy efficacy in a rat brain tumor model. J Pharmacol Exp Ther. 2004;309(2):594–9.

留言 (0)

沒有登入
gif