Emerging and established therapies for chemotherapy-induced ototoxicity

Arlinger S. Negative consequences of uncorrected hearing loss-a review. Int J Audiol. 2003;42(Suppl 2):2S17-20 (Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/129186).

Google Scholar 

Balkany TJ, Eshraghi AA, Jiao H, Polak M, Mou C, Dietrich DW, Van De Water TR. Mild hypothermia protects auditory function during cochlear implant surgery. Laryngoscope. 2005;115(9):1543–7. https://doi.org/10.1097/01.mlg.0000173169.45262.ae.

Article  Google Scholar 

Bánfi B, Malgrange B, Knisz J, Steger K, Dubois-Dauphin M, Krause K-H. NOX3, a superoxide-generating NADPH oxidase of the inner ear*. J Biol Chem. 2004;279(44):46065–72. https://doi.org/10.1074/jbc.M403046200.

Article  CAS  Google Scholar 

Barckhausen C, Roos WP, Naumann SC, Kaina B. Malignant melanoma cells acquire resistance to DNA interstrand cross-linking chemotherapeutics by p53-triggered upregulation of DDB2/XPC-mediated DNA repair. Oncogene. 2014;33(15):1964–74. https://doi.org/10.1038/onc.2013.141.

Article  CAS  Google Scholar 

Behrouzi A, Xia H, Thompson EL, Kelley MR, Fehrenbacher JC. Oxidative DNA damage and cisplatin neurotoxicity is exacerbated by inhibition of OGG1 glycosylase activity and APE1 endonuclease activity in sensory neurons. Int J Mol Sci. 2022;23(3):1909. https://doi.org/10.3390/ijms23031909.

Article  CAS  Google Scholar 

Bernstein C, Bernstein H, Payne CM, Garewal H. DNA repair/pro-apoptotic dual-role proteins in five major DNA repair pathways: fail-safe protection against carcinogenesis. Mutation Research/Reviews in Mutation Research. 2002;511(2):145–78. https://doi.org/10.1016/S1383-5742(02)00009-1.

Article  CAS  Google Scholar 

Breglio AM, Rusheen AE, Shide ED, Fernandez KA, Spielbauer KK, McLachlin KM, Hall MD, Amable L, Cunningham LL. Cisplatin is retained in the cochlea indefinitely following chemotherapy. Nat Commun. 2017;8(1):1654. https://doi.org/10.1038/s41467-017-01837-1.

Article  CAS  Google Scholar 

Brock, P. R., Maibach, R., Childs, M., Rajput, K., Roebuck, D., Sullivan, M. J., Laithier, V., Ronghe, M., Dall'Igna, P., Hiyama, E., Brichard, B., Skeen, J., Mateos, M. E., Capra, M., Rangaswami, A. A., Ansari, M., Rechnitzer, C., Veal, G. J., Covezzoli, A., Brugières, L., … Neuwelt, E. A. (2018). Sodium thiosulfate for protection from cisplatin-induced hearing loss. The New England journal of medicine, 378(25), 2376–2385. https://doi.org/10.1056/NEJMoa1801109

Camet ML, Spence A, Hayashi SS, Wu N, Henry J, Sauerburger K, Hayashi RJ. Cisplatin ototoxicity: examination of the impact of dosing, infusion times, and schedules in pediatric cancer patients. Front Oncol. 2021;11:673080. https://doi.org/10.3389/fonc.2021.673080.

Article  Google Scholar 

Campbell KC, Rehemtulla A, Sunkara P, Hamstra D, Buhnerkempe M, Ross B. Oral D-methionine protects against cisplatin-induced hearing loss in humans: phase 2 randomized clinical trial in India. Int J Audiol. 2022;61(8):621–31. https://doi.org/10.1080/14992027.2021.1983215.

Article  Google Scholar 

Canlon B, Borg E, Flock A. Protection against noise trauma by pre-exposure to a low level acoustic stimulus. Hear Res. 1988;34(2):197–200. https://doi.org/10.1016/0378-5955(88)90107-4.

Article  CAS  Google Scholar 

Casares C, Ramírez-Camacho R, Trinidad A, Roldán A, Jorge E, García-Berrocal JR. Reactive oxygen species in apoptosis induced by cisplatin: review of physiopathological mechanisms in animal models. Eur Arch Otorhinolaryngol. 2012;269(12):2455–9. https://doi.org/10.1007/s00405-012-2029-0.

Article  Google Scholar 

Chaabane W, User SD, El-Gazzah M, Jaksik R, Sajjadi E, Rzeszowska-Wolny J, Łos MJ. Autophagy, apoptosis, mitoptosis and necrosis: interdependence between those pathways and effects on cancer. Arch Immunol Ther Exp. 2013;61(1):43–58. https://doi.org/10.1007/s00005-012-0205-y.

Article  CAS  Google Scholar 

Ciarimboli G, Deuster D, Knief A, Sperling M, Holtkamp M, Edemir B, Pavenstädt H, Lanvers-Kaminsky C, am Zehnhoff-Dinnesen, A., Schinkel, A. H., Koepsell, H., Jürgens, H., & Schlatter, E. Organic cation transporter 2 mediates cisplatin-induced oto- and nephrotoxicity and is a target for protective interventions. Am J Pathol. 2010;176(3):1169–80. https://doi.org/10.2353/ajpath.2010.090610.

Article  CAS  Google Scholar 

Crick F. Central dogma of molecular biology. Nature. 1970;227(5258):561–3. https://doi.org/10.1038/227561a0.

Article  CAS  Google Scholar 

Davis, A., McMahon, C. M., Pichora-Fuller, K. M., Russ, S., Lin, F., Olusanya, B. O., . . . Tremblay, K. L. (2016). Aging and hearing health: the life-course approach. Gerontologist, 56 Suppl 2, S256-267. https://doi.org/10.1093/geront/gnw033

Di Y, Xu T, Tian Y, Ma T, Qu D, Wang Y, Lin Y, Bao D, Yu L, Liu S, Wang A. Ursolic acid protects against cisplatin-induced ototoxicity by inhibiting oxidative stress and TRPV1-mediated Ca2+-signaling. Int J Mol Med. 2020;46(2):806–16. https://doi.org/10.3892/ijmm.2020.4633.

Article  CAS  Google Scholar 

Diggle CP, Bentley J, Knowles MA, Kiltie AE. Inhibition of double-strand break non-homologous end-joining by cisplatin adducts in human cell extracts. Nucleic Acids Res. 2005;33(8):2531–9. https://doi.org/10.1093/nar/gki528.

Article  CAS  Google Scholar 

Duinkerken CW, de Weger VA, Dreschler WA, van der Molen L, Pluim D, Rosing H, Nuijen B, Hauptmann M, Beijnen JH, Balm A, de Boer JP, Burgers JA, Marchetti S, Schellens J, Zuur CL. Transtympanic sodium thiosulfate for prevention of cisplatin-induced ototoxicity: a randomized clinical trial. Otology Neuro : Off Publi American Otological Society, American Neur Soc Eur Acad Otology Neuro. 2021;42(5):678–85. https://doi.org/10.1097/MAO.0000000000003069.

Article  Google Scholar 

Fernandez KA, Allen P, Campbell M, Page B, Townes T, Li CM, Cheng H, Garrett J, Mulquin M, Clements A, Mulford D, Ortiz C, Brewer C, Dubno JR, Newlands S, Schmitt NC, Cunningham LL. Atorvastatin is associated with reduced cisplatin-induced hearing loss. J Clin Investig. 2021;131(1):e142616. https://doi.org/10.1172/JCI142616.

Article  CAS  Google Scholar 

Ferry KV, Hamilton TC, Johnson SW. Increased nucleotide excision repair in cisplatin-resistant ovarian cancer cells: Role of ercc1–xpf. Biochem Pharmacol. 2000;60(9):1305–13. https://doi.org/10.1016/S0006-2952(00)00441-X.

Article  CAS  Google Scholar 

Fetoni AR, Ruggiero A, Lucidi D, De Corso E, Sergi B, Conti G, Paludetti G. Audiological monitoring in children treated with platinum chemotherapy. Audiol Neurootol. 2016;21(4):203–11. https://doi.org/10.1159/000442435.

Article  CAS  Google Scholar 

Florea A-M, Büsselberg D. Cisplatin as an anti-tumor drug: cellular mechanisms of activity, drug resistance and induced side effects. Cancers. 2011;3(1):1351–71. https://doi.org/10.3390/cancers3011351.

Article  CAS  Google Scholar 

Fraval HNA, Roberts JJ. Excision Repair of cis-Diamminedichloroplatinum(II)-induced damage to DNA of Chinese hamster cells. Can Res. 1979;39(5):1793–7.

CAS  Google Scholar 

Freyer DR, Chen L, Krailo MD, Knight K, Villaluna D, Bliss B, Pollock BH, Ramdas J, Lange B, Van Hoff D, VanSoelen ML, Wiernikowski J, Neuwelt EA, Sung L. Effects of sodium thiosulfate versus observation on development of cisplatin-induced hearing loss in children with cancer (ACCL0431): a multicentre, randomised, controlled, open-label, phase 3 trial. Lancet Oncol. 2017;18(1):63–74. https://doi.org/10.1016/S1470-2045(16)30625-8.

Article  CAS  Google Scholar 

Galanski M, Jakupec MA, Keppler BK. Update of the preclinical situation of anticancer platinum complexes: novel design strategies and innovative analytical approaches. Curr Med Chem. 2005;12(18):2075–94. https://doi.org/10.2174/0929867054637626.

Article  CAS  Google Scholar 

Gallegos-Castorena S, Martínez-Avalos A, Mohar-Betancourt A, Guerrero-Avendaño G, Zapata-Tarrés M, Medina-Sansón A. Toxicity prevention with amifostine in pediatric osteosarcoma patients treated with cisplatin and doxorubicin. Pediatr Hematol Oncol. 2007;24(6):403–8. https://doi.org/10.1080/08880010701451244.

Article  CAS  Google Scholar 

Gately DP, Howell SB. Cellular accumulation of the anticancer agent cisplatin: a review. Br J Cancer. 1993;67(6):1171–6. https://doi.org/10.1038/bjc.1993.221.

Article  CAS  Google Scholar 

Gersten BK, Fitzgerald TS, Fernandez KA, Cunningham LL. Ototoxicity and platinum uptake following cyclic administration of platinum-based chemotherapeutic agents. J Assoc Res Otolaryngol. 2020;21(4):303–21. https://doi.org/10.1007/s10162-020-00759-y.

Article  Google Scholar 

Ghosh S. Cisplatin: The first metal based anticancer drug. Bioorg Chem. 2019;88:102925. https://doi.org/10.1016/j.bioorg.2019.102925.

Article  CAS  Google Scholar 

Guthrie OW. Dys-synchronous regulation of XPC and XPA in trigeminal ganglion neurons following cisplatin treatment cycles. Anticancer Res. 2008;28(5A):2637–40.

CAS  Google Scholar 

Guthrie OW. Preincision complex-I from the excision nuclease reaction among cochlear spiral limbus and outer hair cells. J Mol Histol. 2008;39(6):617–25. https://doi.org/10.1007/s10735-008-9202-1.

Article  CAS  Google Scholar 

Guthrie OW. DNA repair proteins and telomerase reverse transcriptase in the cochlear lateral wall of cisplatin-treated rats. JChemo (Florence, Italy). 2009;21(1):74–9. https://doi.org/10.1179/joc.2009.21.1.74.

Article  CAS  Google Scholar 

Guthrie OW. Dynamic compartmentalization of DNA repair proteins within spiral ganglion neurons in response to noise stress. Int J Neurosci. 2012;122(12):757–66. https://doi.org/10.3109/00207454.2012.721828.

Article  CAS  Google Scholar 

Guthrie OW. Localization and distribution of neurons that co-express xeroderma pigmentosum-A and epidermal growth factor receptor within Rosenthal’s canal. Acta Histochem. 2015;117(8):688–95. https://doi.org/10.1016/j.acthis.2015.10.001.

Article  CAS  Google Scholar 

Guthrie OW. Preservation of neural sensitivity after noise-induced suppression of sensory function. J Am Acad Audiol. 2016;27(1):49–61. https://doi.org/10.3766/jaaa.15047.

Article  Google Scholar 

Guthrie OW. Noise stress induces an epidermal growth factor receptor/xeroderma pigmentosum-a response in the auditory nerve. The J Histochem Cytochemss: JHistochem Soc. 2017;65(3):173–84. https://doi.org/10.1369/0022155416683661.

Article  CAS  Google Scholar 

Guthrie OW. Functional consequences of inducible genetic elements from the p53 SOS response in a mammalian organ system. Exp Cell Res. 2017;359(1):50–61. https://doi.org/10.1016/j.yexcr.2017.08.010.

Article  CAS  Google Scholar 

Guthrie OW. Noise induced DNA damage within the auditory nerve. Anatomical Record (Hoboken, NJ: 2007). 2017;300(3):520–6. https://doi.org/10.1002/ar.23494.

Article  CAS  Google Scholar 

Guthrie, O. W. & Balaban, C. (2004) Autometallographical amplification of intracellular anti-

Guthrie OW, Carrero-Martínez FA. Real-time quantification of Xeroderma pigmentosum mRNA from the mammalian cochlea. Ear Hear. 2010;31(5):714–21. https://doi.org/10.1097/AUD.0b013e3181ddf5a3.

Article  Google Scholar 

Guthrie OW, Xu H. Noise exposure potentiates the subcellular distribution of nucleotide excision repair proteins within spiral ganglion neurons. Hear Res. 2012;294(1–2):21–30. https://doi.org/10.1016/j.heares.2012.09.001.

Article  CAS  Google Scholar 

Guthrie OW, Xu H. Reduced phosphorylation of histone variant H2Ax in the organ of corti is associated with otoprotection from noise injury. Otolaryngology Open Access. 2013;3(1):1–9. https://doi.org/10.4172/2161-119X.1000131.

Article 

留言 (0)

沒有登入
gif