Testing the evidence that lifespan-extending compound interventions are conserved across laboratory animal model species

Kennedy BK, et al. Geroscience: linking aging to chronic disease. Cell. 2014;159(4):709–13. https://doi.org/10.1016/j.cell.2014.10.039.

Article  CAS  Google Scholar 

Berkel C, Cacan E. A collective analysis of lifespan-extending compounds in diverse model organisms, and of species whose lifespan can be extended the most by the application of compounds. Biogerontology. 2021;22(6):639–53. https://doi.org/10.1007/s10522-021-09941-y.

Article  Google Scholar 

Moskalev A, et al. Targeting aging mechanisms: pharmacological perspectives”. Trends Endocrinol Metab: TEM. 2022;33(4):266–80. https://doi.org/10.1016/j.tem.2022.01.007.

Article  CAS  Google Scholar 

Pitt JN, et al. WormBot, an open-source robotics platform for survival and behavior analysis in C. elegans. GeroScience. 2019;41(6):961–73. https://doi.org/10.1007/s11357-019-00124-9.

Article  Google Scholar 

Bulterijs S, Braeckman BP. Phenotypic Screening in C elegans as a Tool for the Discovery of New Geroprotective Drugs. Pharmaceuticals (Basel, Switzerland). 2020;13(8):164. https://doi.org/10.3390/ph13080164.

Article  CAS  Google Scholar 

Lee S, Min K. Drosophila melanogaster as a model system in the study of pharmacological interventions in aging. Transl Med Aging. 2019;3:98–103.

Article  Google Scholar 

Nadon NL, et al. Design of aging intervention studies: the NIA interventions testing program. Age (Dordrecht, Netherlands). 2008;30(4):187–99. https://doi.org/10.1007/s11357-008-9048-1.

Article  CAS  Google Scholar 

López-Otín C, Blasco MA, Partridge L, Serrano M, Kroemer G. The hallmarks of aging. Cell. 2013;153(6):1194–217. https://doi.org/10.1016/j.cell.2013.05.039.

Article  CAS  Google Scholar 

Heron M. Deaths: Leading Causes for 2019. Natl Vital Stat Rep: Centers Dis Control Prev Natl Center Health Stat Natl Vital Stat Syst. 2021;70(9):1–114.

Google Scholar 

Snyder JM, et al. Cause-of-death analysis in rodent aging studies. Vet Pathol. 2016;53(2):233–43. https://doi.org/10.1177/0300985815610391.

Article  CAS  Google Scholar 

Lipman R, et al. Genetic loci that influence cause of death in a heterogeneous mouse stock. J Gerontol Ser A, Biol Sci Med Sci. 2004;59(10):977–83. https://doi.org/10.1093/gerona/59.10.b977.

Article  Google Scholar 

Zhao Y, et al. Two forms of death in ageing Caenorhabditis elegans. Nat Commun. 2017;8:15458. https://doi.org/10.1038/ncomms15458.

Article  CAS  Google Scholar 

Galimov ER, et al. Coupling of rigor mortis and intestinal necrosis during C. elegans organismal death”. Cell Rep. 2018;22(10):2730–41. https://doi.org/10.1016/j.celrep.2018.02.050.

Article  CAS  Google Scholar 

Rera M, et al. Intestinal barrier dysfunction links metabolic and inflammatory markers of aging to death in Drosophila. Proc Natl Acad Sci USA. 2012;109(52):21528–33. https://doi.org/10.1073/pnas.1215849110.

Article  Google Scholar 

Salomon RN, Jackson FR. Tumors of testis and midgut in aging flies. Fly. 2008;2(6):265–8. https://doi.org/10.4161/fly.7396.

Article  Google Scholar 

Seals DR, et al. Physiological geroscience: targeting function to increase healthspan and achieve optimal longevity. J Physiol. 2016;594(8):2001–24. https://doi.org/10.1113/jphysiol.2014.282665.

Article  CAS  Google Scholar 

Palliyaguru DL, et al. Frailty index as a biomarker of lifespan and healthspan: Focus on pharmacological interventions. Mech Ageing Dev. 2019;180:42–8. https://doi.org/10.1016/j.mad.2019.03.005.

Article  Google Scholar 

McNeil JJ, et al. Effect of Aspirin on All-Cause Mortality in the Healthy Elderly. N Engl J Med. 2018;379(16):1519–28. https://doi.org/10.1056/NEJMoa1803955.

Article  CAS  Google Scholar 

Lee CG, et al. Effect of metformin and lifestyle interventions on mortality in the diabetes prevention program and diabetes prevention program outcomes study. Diabetes Care. 2021;44(12):2775–82. https://doi.org/10.2337/dc21-1046.

Article  CAS  Google Scholar 

Barardo D, et al. The DrugAge database of aging-related drugs. Aging cell. 2017;16(3):594–7. https://doi.org/10.1111/acel.12585.

Article  CAS  Google Scholar 

Strong R, Miller RA, Astle CM, Floyd RA, Flurkey K, Hensley KL, Javors MA, Leeuwenburgh C, Nelson JF, Ongini E, Nadon NL, Warner HR, Harrison DE. Nordihydroguaiaretic acid and aspirin increase lifespan of genetically heterogeneous male mice. Aging Cell. 2008;7(5):641–50. https://doi.org/10.1111/j.1474-9726.2008.00414.x.

Article  CAS  Google Scholar 

Harrison DE, Strong R, Sharp ZD, Nelson JF, Astle CM, Flurkey K, Nadon NL, Wilkinson JE, Frenkel K, Carter CS, Pahor M, Javors MA, Fernandez E, Miller RA. Rapamycin fed late in life extends lifespan in genetically heterogeneous mice. Nature. 2009;460(7253):392–5. https://doi.org/10.1038/nature08221.

Article  CAS  Google Scholar 

Miller RA, Harrison DE, Astle CM, Baur JA, Boyd AR, de Cabo R, Fernandez E, Flurkey K, Javors MA, Nelson JF, Orihuela CJ, Pletcher S, Sharp ZD, Sinclair D, Starnes JW, Wilkinson JE, Nadon NL, Strong R. Rapamycin, but not resveratrol or simvastatin, extends life span of genetically heterogeneous mice. J Gerontol A Biol Sci Med Sci. 2011;66(2):191–201. https://doi.org/10.1093/gerona/glq178.

Article  CAS  Google Scholar 

Strong R, Miller RA, Astle CM, Baur JA, de Cabo R, Fernandez E, Guo W, Javors M, Kirkland JL, Nelson JF, Sinclair DA, Teter B, Williams D, Zaveri N, Nadon NL, Harrison DE. Evaluation of resveratrol, green tea extract, curcumin, oxaloacetic acid, and medium-chain triglyceride oil on life span of genetically heterogeneous mice. J Gerontol A Biol Sci Med Sci. 2013;68(1):6–16. https://doi.org/10.1093/gerona/gls070.

Article  CAS  Google Scholar 

Harrison DE, Strong R, Allison DB, Ames BN, Astle CM, Atamna H, Fernandez E, Flurkey K, Javors MA, Nadon NL, Nelson JF, Pletcher S, Simpkins JW, Smith D, Wilkinson JE, Miller RA. Acarbose, 17-α-estradiol, and nordihydroguaiaretic acid extend mouse lifespan preferentially in males. Aging Cell. 2014;13(2):273–82. https://doi.org/10.1111/acel.12170.

Article  CAS  Google Scholar 

Strong R, Miller RA, Antebi A, Astle CM, Bogue M, Denzel MS, Fernandez E, Flurkey K, Hamilton KL, Lamming DW, Javors MA, de Magalhães JP, Martinez PA, McCord JM, Miller BF, Müller M, Nelson JF, Ndukum J, Rainger GE, Richardson A, Sabatini DM, Salmon AB, Simpkins JW, Steegenga WT, Nadon NL, Harrison DE. Longer lifespan in male mice treated with a weakly estrogenic agonist, an antioxidant, an α-glucosidase inhibitor or a Nrf2-inducer. Aging Cell. 2016;15(5):872–84. https://doi.org/10.1111/acel.12496.

Article  CAS  Google Scholar 

Miller RA, Harrison DE, Astle CM, Bogue MA, Brind J, Fernandez E, Flurkey K, Javors M, Ladiges W, Leeuwenburgh C, Macchiarini F, Nelson J, Ryazanov AG, Snyder J, Stearns TM, Vaughan DE, Strong R. Glycine supplementation extends lifespan of male and female mice. Aging Cell. 2019;18(3):e12953. https://doi.org/10.1111/acel.12953.

Article  CAS  Google Scholar 

Miller RA, Harrison DE, Allison DB, Bogue M, Debarba L, Diaz V, Fernandez E, Galecki A, Garvey WT, Jayarathne H, Kumar N, Javors MA, Ladiges WC, Macchiarini F, Nelson J, Reifsnyder P, Rosenthal NA, Sadagurski M, Salmon AB, Smith DL Jr, Snyder JM, Lombard DB, Strong R. Canagliflozin extends life span in genetically heterogeneous male but not female mice. JCI Insight. 2020;5(21):e140019. https://doi.org/10.1172/jci.insight.140019.

Article  Google Scholar 

Lucanic M, Plummer W, Chen E, et al. Impact of genetic background and experimental reproducibility on identifying chemical compounds with robust longevity effects. Nat Commun. 2017;8:14256. https://doi.org/10.1038/ncomms14256.

Article  CAS  Google Scholar 

Banse SA, Sedore CA, Johnson E, Coleman-Hulbert AL, Onken B, Hall D, Jackson EG, Huynh P, Foulger AC, Guo S, Garrett T, Xue J, Inman D, Morshead ML, Plummer WT, Chen E, Bhaumik D, Chen MK, Harinath G, Chamoli M, Quinn RP, Falkowski R, Edgar D, Schmidt MO, Lucanic M, Guo M, Driscoll M, Lithgow GJ, Phillips PC. Antioxidants green tea extract and nordihydroguaiaretic acid confer species and strain specific lifespan and health effects in Caenorhabditis nematodes. bioRxiv https://doi.org/10.1101/2021.11.09.464847

Onken B, Sedore CA, Coleman-Hulbert AL, Hall D, Johnson E, Jones EG, Banse SA, Huynh P, Guo S, Xue J, Chen E, Harinath G, Foulger AC, Chao EA, Hope J, Bhaumik D, Plummer T, Inman D, Morshead M, Guo M, Lithgow GJ, Phillips PC, Driscoll M. Metformin treatment of diverse Caenorhabditis species reveals the importance of genetic background in longevity and healthspan extension outcomes. Aging Cell. 2022;21(1):e13488. https://doi.org/10.1111/acel.13488.

Article  CAS  Google Scholar 

Coleman-Hulbert AL, Johnson E, Sedore CA, Banse SA, Guo M, Driscoll M, Lithgow GJ, Phillips PC. Caenorhabditis Intervention Testing Program: the creatine analog β-guanidinopropionic acid does not extend lifespan in nematodes. MicroPubl Biol. 2020;2020. https://doi.org/10.17912/micropub.biology.000207.

Yang S, Long LH, Li D, Zhang JK, Jin S, Wang F, Chen JG. β-Guanidinopropionic acid extends the lifespan of Drosophila melanogaster via an AMP-activated protein kinase-dependent increase in autophagy. Aging Cell. 2015;14(6):1024–33. https://doi.org/10.1111/acel.12371.

Article  CAS  Google Scholar 

Dorigatti JD, Thyne KM, Ginsburg BC, Salmon AB. Beta-guanidinopropionic acid does not extend Drosophila lifespan. Biochem Biophys Rep. 2021;3(27):101040. https://doi.org/10.1016/j.bbrep.2021.101040.

Article  CAS  Google Scholar 

Havermann S, Chovolou Y, Humpf HU, Wätjen W. Caffeic acid phenethylester increases stress resistance and enhances lifespan in Caenorhabditis elegans by modulation of the insulin-like DAF-16 signalling pathway. PLoS ONE. 2014;9(6):e100256. https://doi.org/10.1371/journal.pone.0100256.

Article  Google Scholar 

Jahn A, Scherer B, Fritz G, Honnen S. Statins Induce a DAF-16/Foxo-dependent longevity phenotype via JNK-1 through mevalonate depletion in C. elegans. Aging Dis. 2020;11(1):60–72. https://doi.org/10.14336/AD.2019.0416.

Article  Google Scholar 

Williams DS, Cash A, Hamadani L, Diemer T. Oxaloacetate supplementation increases lifespan in Caenorhabditis elegans through an AMPK/FOXO-dependent pathway. Aging Cell. 2009;8(6):765–8. https://doi.org/10.1111/j.1474-9726.2009.00527.x.

Article  CAS  Google Scholar 

Sugawara S, Honma T, Ito J, Kijima R, Tsuduki T. Fish oil changes the lifespan of Caenorhabditis elegans via lipid peroxidation. J Clin Biochem Nutr. 2013;52(2):139–45. https://doi.org/10.3164/jcbn.12-88.

Article  CAS  Google Scholar 

Negi H, Shukla A, Khan F, Pandey R. 3β-Hydroxy-urs-12-en-28-oic acid prolongs lifespan in C. elegans by modulating JNK-1. Biochem Biophys Res Commun. 2016;480(4):539–43. https://doi.org/10.1016/j.bbrc.2016.10.073.

Article  CAS  Google Scholar 

Negi H, Saikia SK, Pandey R. 3β-Hydroxy-urs-12-en-28-oic Acid Modulates Dietary Restriction Mediated Longevity and Ameliorates Toxic Protein Aggregation in C. elegans. J Gerontol A Biol Sci Med Sci. 2017;72(12):1614–9. https://doi.org/10.1093/gerona/glx118.

Article  CAS  Google Scholar 

Edwards C, Canfield J, Copes N, Brito A, Rehan M, Lipps D, Brunquell J, Westerheide SD, Bradshaw PC. Mechanisms of amino acid-mediated lifespan extension in Caenorhabditis elegans. BMC Genet. 2015;16(1):8. https://doi.org/10.1186/s12863-015-0167-2.

Article  CAS  Google Scholar 

Liu YJ, Janssens GE, McIntyre RL, Molenaars M, Kamble R, Gao AW, Jongejan A, Weeghel MV, MacInnes AW, Houtkooper RH. Glycine promotes longevity in Caenorhabditis elegans in a methionine cycle-dependent fashion. PLoS Genet. 2019;15(3):e1007633. https://doi.org/10.1371/journal.pgen.1007633.

Article 

留言 (0)

沒有登入
gif