Reduction in mitochondrial ROS improves oxidative phosphorylation and provides resilience to coronary endothelium in non-reperfused myocardial infarction

Abid MR, Kachra Z, Spokes KC, Aird WC (2000) NADPH oxidase activity is required for endothelial cell proliferation and migration. FEBS Lett 486:252–256. https://doi.org/10.1016/S0014-5793(00)02305-X

Article  CAS  Google Scholar 

Abid MR, Spokes KC, Shih SC, Aird WC (2007) NADPH oxidase activity selectively modulates vascular endothelial growth factor signaling pathways. J Biol Chem 282:35373–35385. https://doi.org/10.1074/jbc.M702175200

Article  CAS  Google Scholar 

Abid MR, Tsai JC, Spokes KC, Deshpande SS, Irani K, Aird WC (2001) Vascular endothelial growth factor induces manganese-superoxide dismutase expression in endothelial cells by a Racl-regulated NADPH oxidase-dependent mechanism. FASEB J 15:2548–2550. https://doi.org/10.1096/fj.01-0338fje

Article  CAS  Google Scholar 

Abunasra HJ, Smolenski RT, Morrison K, Yap J, Sheppard MN, O’brien T, Suzuki K, Jayakumar J, Yacoub MH, (2001) Efficacy of adenoviral gene transfer with manganese superoxide dismutase and endothelial nitric oxide synthase in reducing ischemia and reperfusion injury. Eur J Cardio Thorac Surg 20:153–158. https://doi.org/10.1016/s1010-7940(01)00704-7

Article  CAS  Google Scholar 

Ahsan N, Belmont J, Chen Z, Clifton JG, Salomon AR (2017) Highly reproducible improved label-free quantitative analysis of cellular phosphoproteome by optimization of LC-MS/MS gradient and analytical column construction. J Proteom. https://doi.org/10.1016/j.jprot.2017.06.013

Article  Google Scholar 

Aldosari S, Awad M, Harrington EO, Sellke FW, Ruhul Abid M (2018) Subcellular reactive oxygen species (ROS) in cardiovascular pathophysiology. Antioxidants. https://doi.org/10.3390/antiox7010014

Article  Google Scholar 

Ale-Agha N, Jakobs P, Goy C, Zurek M, Rosen J, Dyballa-Rukes N, Metzger S, Greulich J, von Ameln F, Eckermann O, Unfried K, Brack F, Grandoch M, Thielmann M, Kamler M, Gedik N, Kleinbongard P, Heinen A, Heusch G, Gödecke A, Altschmied J, Haendeler J (2021) Mitochondrial telomerase reverse transcriptase protects from myocardial ischemia/reperfusion injury by improving complex I composition and function. Circulation 144:1876–1890. https://doi.org/10.1161/CIRCULATIONAHA.120.051923

Article  CAS  Google Scholar 

Alhayaza R, Haque E, Karbasiafshar C, Sellke FW, Abid MR (2020) The relationship between reactive oxygen species and endothelial cell metabolism. Front Chem. https://doi.org/10.3389/FCHEM.2020.592688

Article  Google Scholar 

Anwar MR, Saldana-Caboverde A, Garcia S, Diaz F (2018) The organization of mitochondrial supercomplexes is modulated by oxidative stress in vivo in mouse models of mitochondrial encephalopathy. Int J Mol Sci. https://doi.org/10.3390/IJMS19061582

Article  Google Scholar 

Benjamin EJ, Paul Muntner C, Alvaro Alonso V, Marcio Bittencourt FS, Clifton Callaway MW, April Carson FP, Alanna Chamberlain FM, Chang AR, Susan Cheng M, Sandeep Das FR, Francesca Delling FN, Luc Djousse M, Mitchell Elkind MS, Jane Ferguson FF, Myriam Fornage F, WRITING GROUP MEMBERS On behalf of the American Heart Association Council on Epidemiology and Prevention Statistics Committee and Stroke Statistics Subcommittee (2019) Heart disease and stroke statistics—2019 update: a report from the American Heart Association. Circulation 139:e56–e528. https://doi.org/10.1161/CIR.0000000000000659

Article  Google Scholar 

Bjelakovic G, Nikolova D, Gluud C (2013) Meta-regression analyses, meta-analyses, and trial sequential analyses of the effects of supplementation with beta-carotene, vitamin A, and vitamin E singly or in different combinations on all-cause mortality: do we have evidence for lack of harm? PLoS One. https://doi.org/10.1371/journal.pone.0074558

Article  Google Scholar 

Bjelakovic G, Nikolova D, Gluud LL, Simonetti RG, Gluud C (2007) Mortality in randomized trials of antioxidant supplements for primary and secondary prevention: systematic review and meta-analysis. J Am Med Assoc 297:842–857. https://doi.org/10.1001/jama.297.8.842

Article  CAS  Google Scholar 

Brown DA, Perry JB, Allen ME, Sabbah HN, Stauffer BL, Shaikh SR, Cleland JGF, Colucci WS, Butler J, Voors AA, Anker SD, Pitt B, Pieske B, Filippatos G, Greene SJ, Gheorghiade M (2017) Expert consensus document: mitochondrial function as a therapeutic target in heart failure. Nat Rev Cardiol 14:238–250. https://doi.org/10.1038/nrcardio.2016.203

Article  CAS  Google Scholar 

Chen Y-RR, Zweier JL (2014) Cardiac mitochondria and reactive oxygen species generation. Circ Res 114:524–537. https://doi.org/10.1161/CIRCRESAHA.114.300559

Article  CAS  Google Scholar 

Cheng Y, Liu DZ, Zhang CX, Cui H, Liu M, Zhang BL, Mei QB, Lu ZF, Zhou SY (2019) Mitochondria-targeted antioxidant delivery for precise treatment of myocardial ischemia-reperfusion injury through a multistage continuous targeted strategy. Nanomed Nanotechnol Biol Med 16:236–249. https://doi.org/10.1016/J.NANO.2018.12.014

Article  CAS  Google Scholar 

Cormier N, Yeo A, Fiorentino E, Paxson J (2015) Optimization of the wound scratch assay to detect changes in murine mesenchymal stromal cell migration after damage by soluble cigarette smoke extract. J Vis Exp. https://doi.org/10.3791/53414

Article  Google Scholar 

Davidson SM (2010) Endothelial mitochondria and heart disease. Cardiovasc Res 88:58–66. https://doi.org/10.1093/cvr/cvq195

Article  CAS  Google Scholar 

De-Bock K, Georgiadou M, Schoors S, Kuchnio A, Wong BW, Cantelmo AR, Quaegebeur A, Ghesquière B, Cauwenberghs S, Eelen G, Phng L-KK, Betz I, Tembuyser B, Brepoels K, Welti J, Geudens I, Segura I, Cruys B, Bifari F, Decimo I, Blanco R, Wyns S, Vangindertael J, Rocha S, Collins RT, Munck S, Daelemans D, Imamura H, Devlieger R, Rider M, Van Veldhoven PP, Schuit F, Bartrons R, Hofkens J, Fraisl P, Telang S, Deberardinis RJ, Schoonjans L, Vinckier S, Chesney J, Gerhardt H, Dewerchin M, Carmeliet P, Ghesquiè B, Cauwenberghs S, Eelen G, Phng L-KK, Betz I, Tembuyser B, Brepoels K, Welti J, Geudens I, Segura I, Cruys B, Bifari F, Decimo I, Blanco R, Wyns S, Vangindertael J, Rocha S, Collins RT, Munck S, Daelemans D, Imamura H, Devlieger R, Rider M, Van Veldhoven PP, Schuit F, Bartrons R, Hofkens J, Fraisl P, Telang S, Deberardinis RJ, Schoonjans L, Vinckier S, Chesney J, Gerhardt H, Dewerchin M, Carmeliet P (2013) Role of PFKFB3-driven glycolysis in vessel sprouting. Cell 154:651–663. https://doi.org/10.1016/j.cell.2013.06.037

Article  CAS  Google Scholar 

Escobales N, Nuñez RE, Jang S, Parodi-Rullan R, Ayala-Peña S, Sacher JR, Skoda EM, Wipf P, Frontera W, Javadov S (2014) Mitochondria-targeted ROS scavenger improves post-ischemic recovery of cardiac function and attenuates mitochondrial abnormalities in aged rats. J Mol Cell Cardiol 77:136–146. https://doi.org/10.1016/j.yjmcc.2014.10.009

Article  CAS  Google Scholar 

Fan LM, Douglas G, Bendall JK, McNeill E, Crabtree MJ, Hale AB, Li JM, McAteer MA, Schneider JE, Choudhury RP, Channon KM (2014) Endothelial cell-specific reactive oxygen species production increases susceptibility to aortic dissection. Circulation 129:2661–2672. https://doi.org/10.1161/CIRCULATIONAHA.113.005062

Article  CAS  Google Scholar 

Guo X, Yan F, Li J, Zhang C, Su H, Bu P (2020) SIRT3 ablation deteriorates obesity-related cardiac remodeling by modulating ROS-NF-κB-MCP-1 signaling pathway. J Cardiovasc Pharmacol 76:296–304. https://doi.org/10.1097/FJC.0000000000000877

Article  CAS  Google Scholar 

Hamedani Y, Teixeira RB, Karbasiafshar C, Wipf P, Bhowmick S, Abid MR (2021) Delivery of a mitochondria-targeted antioxidant from biocompatible, polymeric nanofibrous scaffolds. FEBS Open Bio 11:35–47. https://doi.org/10.1002/2211-5463.13032

Article  CAS  Google Scholar 

Harrison D, Griendling KK, Landmesser U, Hornig B, Drexler H (2003) Role of oxidative stress in atherosclerosis. Am J Cardiol 91:7A–11A. https://doi.org/10.1016/s0002-9149(02)03144-2

Article  CAS  Google Scholar 

Hausenloy DJ, Chilian W, Crea F, Davidson SM, Ferdinandy P, Garcia-Dorado D, Van Royen N, Schulz R, Heusch G (2019) The coronary circulation in acute myocardial ischaemia/reperfusion injury: a target for cardioprotection. Cardiovasc Res 115:1143–1155. https://doi.org/10.1093/CVR/CVY286

Article  CAS  Google Scholar 

Heusch G (2016) The coronary circulation as a target of cardioprotection. Circ Res 118:1643–1658. https://doi.org/10.1161/CIRCRESAHA.116.308640

Article  CAS  Google Scholar 

Heusch G (2019) Coronary microvascular obstruction: the new frontier in cardioprotection. Basic Res Cardiol 114:45. https://doi.org/10.1007/s00395-019-0756-8

Article  CAS  Google Scholar 

Irani K (2000) Oxidant signaling in vascular cell growth, death, and survival. Circ Res 87:179–183. https://doi.org/10.1161/01.RES.87.3.179

Article  CAS  Google Scholar 

Javadov S, Jang S, Rodriguez-Reyes N, Rodriguez-Zayas AE, Soto Hernandez J, Krainz T, Wipf P, Frontera W (2015) Mitochondria-targeted antioxidant preserves contractile properties and mitochondrial function of skeletal muscle in aged rats. Oncotarget 6:39469–39481. https://doi.org/10.18632/oncotarget.5783

Article  Google Scholar 

Jha P, Wang X, Auwerx J (2016) Analysis of mitochondrial respiratory chain supercomplexes using blue native polyacrylamide gel electrophoresis (BN-PAGE). Curr Protoc Mouse Biol 6:1. https://doi.org/10.1002/9780470942390.MO150182

Article  Google Scholar 

Johns TNP, Olson BJ (1954) Experimental myocardial infarction. I. A method of coronary occlusion in small animals. Ann Surg 140:675–682. https://doi.org/10.1097/00000658-195411000-00006

Article  CAS  Google Scholar 

Kiyooka T, Ohanyan V, Yin L, Pung YF, Chen YR, Chen CL, Kang PT, Hardwick JP, Yun J, Janota D, Peng J, Kolz C, Guarini G, Wilson G, Shokolenko I, Stevens DA, Chilian WM (2022) Mitochondrial DNA integrity and function are critical for endothelium-dependent vasodilation in rats with metabolic syndrome. Basic Res Cardiol 1171(117):1–15. https://doi.org/10.1007/S00395-021-00908-1

Article  Google Scholar 

Lebovitz RM, Zhang H, Vogel H, Cartwright J, Dionne L, Lu N, Huang S, Matzuk MM (1996) Neurodegeneration, myocardial injury, and perinatal death in mitochondrial superoxide dismutase-deficient mice. Proc Natl Acad Sci USA 93:9782–9787. https://doi.org/10.1073/pnas.93.18.9782

Article  CAS  Google Scholar 

Leipnitz G, Mohsen AW, Karunanidhi A, Seminotti B, Roginskaya VY, Markantone DM, Grings M, Mihalik SJ, Wipf P, Van Houten B, Vockley J (2018) Evaluation of mitochondrial bioenergetics, dynamics, endoplasmic reticulum-mitochondria crosstalk, and reactive oxygen species in fibroblasts from patients with complex I deficiency. Sci Rep 8:1–14. https://doi.org/10.1038/s41598-018-19543-3

Article  CAS  Google Scholar 

Li J, Zhao Y, Zhu W (2022) Targeting angiogenesis in myocardial infarction: novel therapeutics (review). Exp Ther Med. https://doi.org/10.3892/ETM.2021.10986

Article  Google Scholar 

Li Y, Huang TT, Carlson EJ, Melov S, Ursell PC, Olson JL, Noble LJ, Yoshimura MP, Berger C, Chan PH, Wallace DC, Epstein CJ (1995) Dilated cardiomyopathy and neonatal lethality in mutant mice lacking manganese superoxide dismutase. Nat Genet 11:376–381. https://doi.org/10.1038/ng1295-376

Article  CAS  Google Scholar 

Lindsey ML, Bolli R, Canty JM, Du X-J, Frangogiannis NG, Frantz S, Gourdie RG, Holmes JW, Jones SP, Kloner RA, Lefer DJ, Liao R, Murphy E, Ping P, Przyklenk K, Recchia FA, Schwartz Longacre L, Ripplinger CM, Van Eyk JE, Heusch G (2018) Guidelines for experimental models of myocardial ischemia and infarction. Am J Physiol Circ Physiol 314:H812–H838. https://doi.org/10.1152/ajpheart.00335.2017

Article  CAS  Google Scholar 

Lu Q, Mundy M, Chambers E, Lange T, Newton J, Borgas D, Yao H, Choudhary G, Basak R, Oldham M, Rounds S (2017) Alda-1 protects against acrolein-induced acute lung injury and endothelial barrier dysfunction. Am J Respir Cell Mol Biol 57:662–673. https://doi.org/10.1165/rcmb.2016-0342OC

Article  CAS  Google Scholar 

留言 (0)

沒有登入
gif