Circadian rhythms in the blood–brain barrier: impact on neurological disorders and stress responses

Hastings MH, Maywood ES, Brancaccio M. Generation of circadian rhythms in the suprachiasmatic nucleus. Nat Rev Neurosci. 2018;19:453–69. https://doi.org/10.1038/s41583-018-0026-z.

Article  CAS  Google Scholar 

Fernandez DC, Chang YT, Hattar S, Chen SK. Architecture of retinal projections to the central circadian pacemaker. Proc Natl Acad Sci U S A. 2016;113:6047–52. https://doi.org/10.1073/pnas.1523629113.

Article  CAS  Google Scholar 

Patton AP, Hastings MH. The suprachiasmatic nucleus. Curr Biol. 2018;28:R816–22. https://doi.org/10.1016/j.cub.2018.06.052.

Article  CAS  Google Scholar 

Ueyama T, Krout KE, Nguyen XV, Karpitskiy V, Kollert A, Mettenleiter TC, Loewy AD. Suprachiasmatic nucleus: a central autonomic clock. Nat Neurosci. 1999;2:1051–3. https://doi.org/10.1038/15973.

Article  CAS  Google Scholar 

Reddy AB, Maywood ES, Karp NA, King VM, Inoue Y, Gonzalez FJ, Lilley KS, Kyriacou CP, Hastings MH. Glucocorticoid signaling synchronizes the liver circadian transcriptome. Hepatology. 2007;45:1478–88. https://doi.org/10.1002/hep.21571.

Article  CAS  Google Scholar 

Greco CM, Sassone-Corsi P. Circadian blueprint of metabolic pathways in the brain. Nat Rev Neurosci. 2019;20:71–82. https://doi.org/10.1038/s41583-018-0096-y.

Article  CAS  Google Scholar 

Welsh DK, Takahashi JS, Kay SA. Suprachiasmatic nucleus: cell autonomy and network properties. Annu Rev Physiol. 2010;72:551–77. https://doi.org/10.1146/annurev-physiol-021909-135919.

Article  CAS  Google Scholar 

Mieda M. The network mechanism of the central circadian pacemaker of the SCN: do AVP neurons play a more critical role than expected? Front Neurosci. 2019;13:139. https://doi.org/10.3389/fnins.2019.00139.

Article  Google Scholar 

Stepanyuk AR, Belan PV, Kononenko NI. A model for the fast synchronous oscillations of firing rate in rat suprachiasmatic nucleus neurons cultured in a multielectrode array dish. PLoS ONE. 2014;9:e106152. https://doi.org/10.1371/journal.pone.0106152.

Article  CAS  Google Scholar 

Welsh DK. VIP activates and couples clock cells. Focus on “Disrupted neuronal activity rhythms in the suprachiasmatic nucleus of vasoactive intestinal polypeptide-deficient mice”. J Neurophysiol. 2007;97:1885–6. https://doi.org/10.1152/jn.00063.2007.

Article  CAS  Google Scholar 

Aton SJ, Colwell CS, Harmar AJ, Waschek J, Herzog ED. Vasoactive intestinal polypeptide mediates circadian rhythmicity and synchrony in mammalian clock neurons. Nat Neurosci. 2005;8:476–83. https://doi.org/10.1038/nn1419.

Article  CAS  Google Scholar 

Liu AC, Lewis WG, Kay SA. Mammalian circadian signaling networks and therapeutic targets. Nat Chem Biol. 2007;3:630–9. https://doi.org/10.1038/nchembio.2007.37.

Article  CAS  Google Scholar 

Paschos GK, FitzGerald GA. Circadian clocks and vascular function. Circ Res. 2010;106:833–41. https://doi.org/10.1161/CIRCRESAHA.109.211706.

Article  CAS  Google Scholar 

Scammell TE, Arrigoni E, Lipton JO. Neural circuitry of Wakefulness and Sleep. Neuron. 2017;93:747–65. https://doi.org/10.1016/j.neuron.2017.01.014.

Article  CAS  Google Scholar 

Colwell CS. Linking neural activity and molecular oscillations in the SCN. Nat Rev Neurosci. 2011;12:553–69. https://doi.org/10.1038/nrn3086.

Article  CAS  Google Scholar 

Buhr ED, Yoo SH, Takahashi JS. Temperature as a universal resetting cue for mammalian circadian oscillators. Science. 2010;330:379–85. https://doi.org/10.1126/science.1195262.

Article  CAS  Google Scholar 

Maywood ES, Chesham JE, O’Brien JA, Hastings MH. A diversity of paracrine signals sustains molecular circadian cycling in suprachiasmatic nucleus circuits. Proc Natl Acad Sci U S A. 2011;108:14306–11. https://doi.org/10.1073/pnas.1101767108.

Article  Google Scholar 

Mieda M, Ono D, Hasegawa E, Okamoto H, Honma K, Honma S, Sakurai T. Cellular clocks in AVP neurons of the SCN are critical for interneuronal coupling regulating circadian behavior rhythm. Neuron. 2015;85:1103–16. https://doi.org/10.1016/j.neuron.2015.02.005.

Article  CAS  Google Scholar 

Deboer T, Vansteensel MJ, Detari L, Meijer JH. Sleep states alter activity of suprachiasmatic nucleus neurons. Nat Neurosci. 2003;6:1086–90. https://doi.org/10.1038/nn1122.

Article  CAS  Google Scholar 

Dibner C, Schibler U, Albrecht U. The mammalian circadian timing system: organization and coordination of central and peripheral clocks. Annu Rev Physiol. 2010;72:517–49. https://doi.org/10.1146/annurev-physiol-021909-135821.

Article  CAS  Google Scholar 

Son GH, Chung S, Kim K. The adrenal peripheral clock: glucocorticoid and the circadian timing system. Front Neuroendocrinol. 2011;32:451–65. https://doi.org/10.1016/j.yfrne.2011.07.003.

Article  CAS  Google Scholar 

Gekakis N, Staknis D, Nguyen HB, Davis FC, Wilsbacher LD, King DP, Takahashi JS, Weitz CJ. Role of the CLOCK protein in the mammalian circadian mechanism. Science. 1998;280:1564–9. https://doi.org/10.1126/science.280.5369.1564.

Article  CAS  Google Scholar 

Hara R, Wan K, Wakamatsu H, Aida R, Moriya T, Akiyama M, Shibata S. Restricted feeding entrains liver clock without participation of the suprachiasmatic nucleus. Genes Cells. 2001;6:269–78. https://doi.org/10.1046/j.1365-2443.2001.00419.x.

Article  CAS  Google Scholar 

Damiola F, Le Minh N, Preitner N, Kornmann B, Fleury-Olela F, Schibler U. Restricted feeding uncouples circadian oscillators in peripheral tissues from the central pacemaker in the suprachiasmatic nucleus. Genes Dev. 2000;14:2950–61. https://doi.org/10.1101/gad.183500.

Article  CAS  Google Scholar 

Zhang R, Lahens NF, Ballance HI, Hughes ME, Hogenesch JB. A circadian gene expression atlas in mammals: implications for biology and medicine. Proc Natl Acad Sci U S A. 2014;111:16219–24. https://doi.org/10.1073/pnas.1408886111.

Article  CAS  Google Scholar 

Mure LS, Le HD, Benegiamo G, Chang MW, Rios L, Jillani N, Ngotho M, Kariuki T, Dkhissi-Benyahya O, Cooper HM, et al. Diurnal transcriptome atlas of a primate across major neural and peripheral tissues. Science. 2018. https://doi.org/10.1126/science.aao0318.

Article  Google Scholar 

Ruan W, Yuan X, Eltzschig HK. Circadian rhythm as a therapeutic target. Nat Rev Drug Discov. 2021;20:287–307. https://doi.org/10.1038/s41573-020-00109-w.

Article  CAS  Google Scholar 

Smolensky MH, Hermida RC, Reinberg A, Sackett-Lundeen L, Portaluppi F. Circadian disruption: New clinical perspective of disease pathology and basis for chronotherapeutic intervention. Chronobiol Int. 2016;33:1101–19. https://doi.org/10.1080/07420528.2016.1184678.

Article  Google Scholar 

Lunn RM, Blask DE, Coogan AN, Figueiro MG, Gorman MR, Hall JE, Hansen J, Nelson RJ, Panda S, Smolensky MH, et al. Health consequences of electric lighting practices in the modern world: a report on the National Toxicology Program’s workshop on shift work at night, artificial light at night, and circadian disruption. Sci Total Environ. 2017;607–608:1073–84. https://doi.org/10.1016/j.scitotenv.2017.07.056.

Article  CAS  Google Scholar 

Hatori M, Gronfier C, Van Gelder RN, Bernstein PS, Carreras J, Panda S, Marks F, Sliney D, Hunt CE, Hirota T, et al. Global rise of potential health hazards caused by blue light-induced circadian disruption in modern aging societies. NPJ Aging Mech Dis. 2017;3:9. https://doi.org/10.1038/s41514-017-0010-2.

Article  Google Scholar 

Deaver JA, Eum SY, Toborek M. Circadian disruption changes gut Microbiome Taxa and Functional Gene Composition. Front Microbiol. 2018;9:737. https://doi.org/10.3389/fmicb.2018.00737.

Article  Google Scholar 

Teichman EM, O’Riordan KJ, Gahan CGM, Dinan TG, Cryan JF. When rhythms meet the blues: circadian interactions with the Microbiota-Gut-Brain Axis. Cell Metab. 2020;31:448–71. https://doi.org/10.1016/j.cmet.2020.02.008.

Article  CAS  Google Scholar 

Thaiss CA, Levy M, Korem T, Dohnalova L, Shapiro H, Jaitin DA, David E, Winter DR, Gury-BenAri M, Tatirovsky E, et al. Microbiota diurnal rhythmicity programs host transcriptome oscillations. Cell. 2016;167:1495-1510.e1412. https://doi.org/10.1016/j.cell.2016.11.003.

Article  CAS  Google Scholar 

Mu C, Yang Y, Zhu W. Gut microbiota: the Brain Peacekeeper. Front Microbiol. 2016;7:345. https://doi.org/10.3389/fmicb.2016.00345.

Article  Google Scholar 

Voigt RM, Forsyth CB, Green SJ, Engen PA, Keshavarzian A. Circadian rhythm and the gut Microbiome. Int Rev Neurobiol. 2016;131:193–205. https://doi.org/10.1016/bs.irn.2016.07.002.

Article  CAS  Google Scholar 

Asher G, Schibler U. Crosstalk between components of circadian and metabolic cycles in mammals. Cell Metab. 2011;13:125–37. https://doi.org/10.1016/j.cmet.2011.01.006.

Article  CAS  Google Scholar 

Eckel-Mahan K, Sassone-Corsi P. Metabolism and the circadian clock converge. Physiol Rev. 2013;93:107–35. https://doi.org/10.1152/physrev.00016.2012.

Article  CAS  Google Scholar 

Green CB, Takahashi JS, Bass J. The meter of metabolism. Cell. 2008;134:728–42. https://doi.org/10.1016/j.cell.2008.08.022.

Article  CAS  Google Scholar 

Fonken LK, Weil ZM, Nelson RJ. Mice exposed to dim light at night exaggerate inflammatory responses to lipopolysaccharide. Brain Behav Immun. 2013;34:159–63. https://doi.org/10.1016/j.bbi.2013.08.011.

Article  CAS  Google Scholar 

Hulsegge G, Loef B, van Kerkhof LW, Roenneberg T, van der Beek AJ, Proper KI. Shift work, sleep disturbances and social jetlag in healthcare workers. J Sleep Res. 2019;28:e12802. https://doi.org/10.1111/jsr.12802.

Article  Google Scholar 

Rosa D, Terzoni S, Dellafiore F, Destrebecq A. Systematic review of shift work and nurses’ health. Occup Med (Lond). 2019;69:237–43. https://doi.org/10.1093/occmed/kqz063.

Article  CAS  Google Scholar 

Vanttola P, Puttonen S, Karhula K, Oksanen T, Harma M. Prevalence of shift work disorder among hospital personnel: a cross-sectional study using objective working hour data. J Sleep Res. 2020;29:e12906. https://doi.org/10.1111/jsr.12906.

Article 

留言 (0)

沒有登入
gif