Computational insights on asymmetrical $$D_{1}$$ and $$D_{2}$$ receptor-mediated chunking: implications for OCD and Schizophrenia

Agnoli L, Mainolfi P, Invernizzi R, Carli M (2013) Dopamine \(D_\)-like and \(D_\)-like receptors in the dorsal striatum control different aspects of attentional performance in the five-choice serial reaction time task under a condition of increased activity of corticostriatal inputs. Neuropsychopharmacology 38(5):701–714

Article  CAS  Google Scholar 

Asabuki T, Hiratani N, Fukai T (2018) Interactive reservoir computing for chunking information streams. PLoS Comput Biol 14(10):e1006400

Article  Google Scholar 

Augustin S, Loewinger G, O’Neal T, Kravitz A, Lovinger D (2020) Dopamine \(D_\) receptor signaling on \(iMSNs\) is required for initiation and vigor of learned actions. Neuropsychopharmacology 45(12):2087–2097

Article  CAS  Google Scholar 

Avery M, Krichmar L (2015) Improper activation of \(D_\) and \(D_\) receptors leads to excess noise in prefrontal cortex. Front Comput Neurosci 9:31

Article  Google Scholar 

Bahuguna J, Aertsen A, Kumar A (2015) Existence and control of Go/No-Go decision transition threshold in the striatum. PLoS Comput Biol 11(4)

Bahuguna J, Weidel P, Morrison A (2019) Exploring the role of striatal \(D_\) and \(D_\) medium spiny neurons in action selection using a virtual robotic framework. Eur J Neurosci 49(6):737–753

Article  Google Scholar 

Barnes T, Kubota Y, Hu D, Jin D, Graybiel A (2005) Activity of striatal neurons reflects dynamic encoding and recoding of procedural memories. Nature 437:1158–1161

Article  CAS  Google Scholar 

Bellini S, Fleming K, De M, McCauley J, Petroccione M, D’Brant L, Tkachenko A, Kwon S, Jones L, Scimemi A (2018) Neuronal glutamate transporters control dopaminergic signaling and compulsive behaviors. J Neurosci 38(4):937–961

Article  CAS  Google Scholar 

Bensmann W, Zink N, Arning L, Beste C, Stock A (2020) Dopamine \(D_\), but not \(D_\), signaling protects mental representations from distracting bottom-up influences. Neuroimage 204:116243

Article  CAS  Google Scholar 

Bernacchia A, Seo H, Lee D, Wang X (2011) A reservoir of time constants for memory traces in cortical neurons. Nat Neurosci 14(3):366–72

Article  CAS  Google Scholar 

Berridge K, Aldridge J (2000) Super-stereotypy II: Enhancement of a complex movement sequence by intraventricular dopamine D1 agonists. Synapse 37:205–215

Berridge K, Aldridge J, Houchard K, Zhuang X (2005) Sequential super-stereotypy of an instinctive fixed action pattern in hyper-dopaminergic mutant mice: a model of obsessive compulsive disorder and Tourette’s. BMC Biol 3:4

Article  Google Scholar 

Bodén R, Persson J, Wall A, Lubberink M, Ekselius L, Larsson E, Antoni G (2017) Striatal phosphodiesterase 10A and medial prefrontal cortical thickness in patients with schizophrenia: a PET and MRI study. Transl Psychiatry 7(3):e1050

Article  Google Scholar 

Burke D, Rotstein H, Alvarez V (2017) Striatal local circuitry: A new framework for lateral inhibition. Neuron 96(2):267–284

Article  CAS  Google Scholar 

Campbell K, de Lecea L, Severynse D, Caron M, McGrath M, Sparber S, Sun L, Burton F. (1999) OCD-like behaviors caused by a neuropotentiating transgene targeted to cortical and limbic \(D_\)+ neurons. J Neuroscience 19:5044–5053

Article  CAS  Google Scholar 

Cazorla M, Shegda M, Ramesh B, Harrison N, Kellendonk C (2012) Striatal D2 receptors regulate dendritic morphology of medium spiny neurons via Kir2 channels. J Neurosci 32(7):2398–2409

Article  CAS  Google Scholar 

Cervenka S (2019) PET radioligands for the dopamine D1-receptor: application in psychiatric disorders. Neurosci Lett 691:26–34

Article  CAS  Google Scholar 

Chuhma N, Tanaka K, Hen R, Rayport S (2011) Functional connectome of the striatal medium spiny neuron. J Neurosci 31(4):1183–92

Cox C, Zuccolo A, Edwards E, Mascaro-Blanco A, Alvarez K, Stoner J, Chang K, Cunningham M (2015) Antineuronal antibodies in a heterogeneous group of youth and young adults with tics and obsessive-compulsive disorder. J Child Adolesc Psychopharmacol 25(1):76–85

Article  CAS  Google Scholar 

Crider A (1997) Perseveration in schizophrenia. Schizophr Bull 23(1):63–74

Article  CAS  Google Scholar 

Cruz BF, Guiomar G, Soares S, Motiwala A, Machens CK, Paton JJ (2022) Action suppression reveals opponent parallel control via striatal circuits. Nature 607(7919):521–526

Cui G, Jun S, Jin X, Pham MD, Vogel S, Lovinger David M, Rui MC (2013) Concurrent activation of striatal direct and indirect pathways during action initiation. Nature 494:238–242

Article  CAS  Google Scholar 

Dehaene S, Meyniel F, Wacongne C, Wang L, Pallier C (2015) The neural representation of sequences: from transition probabilities to algebraic patterns and linguistic trees. Neuron 88(1):2–19

Article  CAS  Google Scholar 

Denys D, de Vries F, Cath D, Figee M, Vulink N, Veltman D, van der Doef T, Boellaard R, Westenberg H, van Balkom A, Lammertsma A, van Berckel B (2013) Dopaminergic activity in Tourette syndrome and obsessive-compulsive disorder. Eur Neuropsychopharmacol 23(11):1423–31

Article  CAS  Google Scholar 

Dreyer J, Herrik K, Berg R, Hounsgaard J (2010) Influence of phasic and tonic dopamine release on receptor activation. J Neurosci 30(42):14273–83

Article  CAS  Google Scholar 

Durstewitz D, Seamans J (2008) The dual-state theory of prefrontal cortex dopamine function with relevance to catechol-o-methyltransferase genotypes and schizophrenia. Biol Psychiatry 64(9):739–49

Article  CAS  Google Scholar 

Eagle D, Noschang C, d’Angelo L, Noble CA, Day J, Dongelmans M, Theobald D, Mar A, Urcelay G, Morein-Zamir S, Robbins T (2014) The dopamine \(D_\) / \(D_\) receptor agonist quinpirole increases checking-like behaviour in an operant observing response task with uncertain reinforcement: a novel possible model of OCD. Behav Brain Res 264:207–29

Article  CAS  Google Scholar 

Eilam D (2017) From an animal model to human patients: an example of a translational study on obsessive compulsive disorder (OCD). Neurosci Biobehav Rev 76(Pt A):67–76

Article  Google Scholar 

Endres D, Pollak T, Bechter K, Denzel D, Pitsch K, Nickel K, Runge K, Pankratz B, Klatzmann D, Tamouza R, Mallet L, Leboyer M, Prüss H, Voderholzer U, Cunningham J, ECNP-Network-Immuno N, Domschke K, TebartzvanElst L, Schiele M (2022) Immunological causes of obsessive-compulsive disorder: is it time for the concept of an "autoimmune OCD" subtype? Transl Psychiatry 12(1):5

Article  Google Scholar 

Fino E, Vandecasteele M, Perez S, Saudou F, Venance L (2018) Region-specific and state-dependent action of striatal GABAergic interneurons. Nat Commun 9(1):3339

Article  Google Scholar 

Franklin N, Frank M (2015) A cholinergic feedback circuit to regulate striatal population uncertainty and optimize reinforcement learning. Elife 25(4):e12029

Article  Google Scholar 

Garr E (2019) Contributions of the basal ganglia to action sequence learning and performance. Neurosci Biobehav Rev 107:279–295

Article  Google Scholar 

Gerfen C, Surmeier D (2011) Modulation of striatal projection systems by dopamine. Annu Rev Neurosci 34:441–66

Article  CAS  Google Scholar 

Gertler T, Chan C, Surmeier D (2008) Dichotomous anatomical properties of adult striatal medium spiny neurons. J Neurosci 28(43):10814–24

Article  CAS  Google Scholar 

Graybiel A (1998) The basal ganglia and chunking of action repertoires. Neurobiol Learn Mem 70(1–2):119–36

Article  CAS  Google Scholar 

Hoffman K, Rueda Morales RI (2012) D1 and D2 dopamine receptor antagonists decrease behavioral bout duration, without altering the bout’s repeated behavioral components, in a naturalistic model of repetitive and compulsive behavior. Behav Brain Res 230(1):1–10

Article  CAS  Google Scholar 

Howard C, Li H, Geddes C, Jin X (2017) Dynamic nigrostriatal dopamine biases action selection. Neuron 93(6):1436–1450

Article  CAS  Google Scholar 

Hunger L, Kumar A, Schmidt R (2020) Abundance compensates kinetics: similar effect of dopamine signals on \(D_\) and \(D_\) receptor populations. J Neurosci 40(14):2868–2881

Article  CAS  Google Scholar 

Jin X, Costa R (2010) Start/stop signals emerge in nigrostriatal circuits during sequence learning. Nature 466(7305):457–62

Article  CAS  Google Scholar 

Jin X, Tecuapetla F, Costa R (2014) Basal ganglia subcircuits distinctively encode the parsing and concatenation of action sequences. Nat Neurosci 17(3):423–430

Article  CAS  Google Scholar 

Joel D, Doljansky J (2003) Selective alleviation of compulsive lever-pressing in rats by \(D_\), but not \(D_\), blockade: possible implications for the involvement of \(D_\) receptors in obsessive-compulsive disorder. Neuropsychopharmacology 28(1):77–85

Article  CAS  Google Scholar 

Keeler J, Pretsell D, Robbins T (2014) Functional implications of dopamine \(D_\) vs. \(D_\) receptors: a 'prepare and select' model of the striatal direct versus indirect pathways. Neuroscience 282:156–175

Article  CAS  Google Scholar 

Klaus A, Alves da Silva J, Costa R (2019) What, if, and when to move: basal ganglia circuits and self-paced action initiation. Annu Rev Neurosci 42:459–483

Article  CAS  Google Scholar 

Krajeski R, Macey-Dare A, vanHeusden F, Ebrahimjee F, Ellender T (2019) Dynamic postnatal development of the cellular and circuit properties of striatal \(D_\) and \(D_\) spiny projection neurons. J Physiol 597(21):5265–5293

Article  CAS  Google Scholar 

Lalchandani R, Van der Goes MC, Partridge J, Vicini S (2013) Dopamine D2 receptors regulate collateral inhibition between striatal medium spiny neurons. J Neurosci 33(35):14075–14086

Article  CAS  Google Scholar 

Laruelle M (1998) Imaging dopamine transmission in schizophrenia. A review and meta-analysis. Q J Nucl Med 42(3):211–221

CAS  Google Scholar 

Lukoševičius M (2012) A practical guide to applying echo state networks. Neural Netw. 28(43):659–686

留言 (0)

沒有登入
gif