Considering the Oral Bioavailability of Protein Kinase Inhibitors: Essential in Assessing the Extent of Drug–Drug Interaction and Improving Clinical Practice

Pan Z, Scheerens H, Li S-J, Schultz BE, Sprengeler PA, Burrill LC, et al. Discovery of selective irreversible inhibitors for Bruton’s tyrosine kinase. ChemMedChem. 2007;2:58–61.

Article  CAS  Google Scholar 

Ke E-E, Wu Y-L. EGFR as a pharmacological target in EGFR-mutant non-small-cell lung cancer: where do we stand now? Trends Pharmacol Sci. 2016;37:887–903.

Article  CAS  Google Scholar 

Gougis P, Wassermann J, Spano JP, Keynan N, Funck-Brentano C, Salem JE. Clinical pharmacology of anti-angiogenic drugs in oncology. Crit Rev Oncol Hematol. 2017;119:75–93.

Article  CAS  Google Scholar 

Rossari F, Minutolo F, Orciuolo E. Past, present, and future of Bcr-Abl inhibitors: from chemical development to clinical efficacy. J Hematol Oncol. 2018;11:84.

Article  Google Scholar 

Hanahan D. Hallmarks of cancer: new dimensions. Cancer Discov. 2022;12:31–46.

Article  CAS  Google Scholar 

Capdeville R, Buchdunger E, Zimmermann J, Matter A. Glivec (STI571, imatinib), a rationally developed, targeted anticancer drug. Nat Rev Drug Discov. 2002;1:493–502.

Article  CAS  Google Scholar 

Carrato Mena A, Grande Pulido E, Guillén-Ponce C. Understanding the molecular-based mechanism of action of the tyrosine kinase inhibitor: sunitinib. Anticancer Drugs. 2010;21:S3.

Article  Google Scholar 

Choueiri TK, Escudier B, Powles T, Mainwaring PN, Rini BI, Donskov F, et al. Cabozantinib versus everolimus in advanced renal-cell carcinoma. N Engl J Med. 2015;373:1814–23.

Article  CAS  Google Scholar 

Rini BI, Escudier B, Tomczak P, Kaprin A, Szczylik C, Hutson TE, et al. Comparative effectiveness of axitinib versus sorafenib in advanced renal cell carcinoma (AXIS): a randomised phase 3 trial. The Lancet. 2011;378:1931–9.

Article  CAS  Google Scholar 

van der Graaf WT, Blay J-Y, Chawla SP, Kim D-W, Bui-Nguyen B, Casali PG, et al. Pazopanib for metastatic soft-tissue sarcoma (PALETTE): a randomised, double-blind, placebo-controlled phase 3 trial. The Lancet. 2012;379:1879–86.

Article  Google Scholar 

Burger JA, Tedeschi A, Barr PM, Robak T, Owen C, Ghia P, et al. Ibrutinib as initial therapy for patients with chronic lymphocytic leukemia. N Engl J Med. 2015;373:2425–37.

Article  CAS  Google Scholar 

Younes A, Sehn LH, Johnson P, Zinzani PL, Hong X, Zhu J, et al. Randomized phase III trial of ibrutinib and rituximab plus cyclophosphamide, doxorubicin, vincristine, and prednisone in non-germinal center B-cell diffuse large B-cell lymphoma. J Clin Oncol. 2019;37:1285–95.

Article  CAS  Google Scholar 

Yang K, Fu L. Mechanisms of resistance to BCR–ABL TKIs and the therapeutic strategies: a review. Crit Rev Oncol Hematol. 2015;93:277–92.

Article  Google Scholar 

Peng B, Dutreix C, Mehring G, Hayes MJ, Ben-Am M, Seiberling M, et al. Absolute bioavailability of imatinib (Glivec®) orally versus intravenous infusion. J Clin Pharmacol. 2004;44:158–62.

Article  Google Scholar 

Center for Drug Evaluation and Research [CDER], US FDA. Clinical Pharmacology and Biopharmaceutics Review(s): ibrutinib. Silver Spring, MD; US FDA; 2013. https://www.accessdata.fda.gov/drugsatfda_docs/nda/2013/205552orig1s000clinpharmr.pdf. (cited 2022 Oct 10)

Zhang W, McIntyre C, Forbes H, Gaafar R, Kohail H, Beck JT, et al. Effect of rifampicin on the pharmacokinetics of a single dose of vemurafenib in patients with BRAF V600 mutation-positive metastatic malignancy. Clin Pharmacol Drug Dev. 2019;8:837–43.

Article  CAS  Google Scholar 

Tanaka C, Yin OQP, Smith T, Sethuraman V, Grouss K, Galitz L, et al. Effects of rifampin and ketoconazole on the pharmacokinetics of nilotinib in healthy participants. J Clin Pharmacol. 2011;51:75–83.

Article  CAS  Google Scholar 

Dutreix C, Peng B, Mehring G, Hayes M, Capdeville R, Pokorny R, et al. Pharmacokinetic interaction between ketoconazole and imatinib mesylate (Glivec) in healthy subjects. Cancer Chemother Pharmacol. 2004;54:290–4.

Article  CAS  Google Scholar 

Jong J, Skee D, Murphy J, Sukbuntherng J, Hellemans P, Smit J, et al. Effect of CYP3A perpetrators on ibrutinib exposure in healthy participants. Pharmacol Res Perspect. 2015;3(4):e00156. https://doi.org/10.1002/prp2.156. (cited 2022 Sep 26).

Article  CAS  Google Scholar 

Rowland M, Benet LZ, Graham GG. Clearance concepts in pharmacokinetics. J Pharmacokinet Biopharm. 1973;1:123–36.

Article  CAS  Google Scholar 

Benet LZ. Clearance (née Rowland) concepts: a downdate and an update. J Pharmacokinet Pharmacodyn. 2010;37:529–39.

Article  CAS  Google Scholar 

Pang KS, Han YR, Noh K, Lee PI, Rowland M. Hepatic clearance concepts and misconceptions: why the well-stirred model is still used even though it is not physiologic reality? Biochem Pharmacol. 2019;169: 113596.

Article  CAS  Google Scholar 

Wilkinson GR, Shand DG. Commentary: a physiological approach to hepatic drug clearance. Clin Pharmacol Ther. 1975;18:377–90.

Article  CAS  Google Scholar 

Tod M, Goutelle S, Bleyzac N, Bourguignon L. A generic model for quantitative prediction of interactions mediated by efflux transporters and cytochromes: application to P-glycoprotein and cytochrome 3A4. Clin Pharmacokinet. 2019;58:503–23.

Article  CAS  Google Scholar 

Deng Y, Sychterz C, Suttle AB, Dar MM, Bershas D, Negash K, et al. Bioavailability, metabolism and disposition of oral pazopanib in patients with advanced cancer. Xenobiotica. 2013;43:443–53.

Article  CAS  Google Scholar 

Tan AR, Gibbon DG, Stein MN, Lindquist D, Edenfield JW, Martin JC, et al. Effects of ketoconazole and esomeprazole on the pharmacokinetics of pazopanib in patients with solid tumors. Cancer Chemother Pharmacol. 2013;71:1635–43.

Article  CAS  Google Scholar 

Rakhit A, Pantze MP, Fettner S, Jones HM, Charoin J-E, Riek M, et al. The effects of CYP3A4 inhibition on erlotinib pharmacokinetics: computer-based simulation (SimCYPTM) predicts in vivo metabolic inhibition. Eur J Clin Pharmacol. 2008;64:31–41.

Article  CAS  Google Scholar 

Scheers E, Leclercq L, de Jong J, Bode N, Bockx M, Laenen A, et al. Absorption, metabolism, and excretion of oral 14C radiolabeled ibrutinib: an open-label, phase I, single-dose study in healthy men. Drug Metab Dispos. 2015;43:289–97.

Article  Google Scholar 

Heath EI, Chiorean EG, Sweeney CJ, Hodge JP, Lager JJ, Forman K, et al. A phase I study of the pharmacokinetic and safety profiles of oral pazopanib with a high-fat or low-fat meal in patients with advanced solid tumors. Clin Pharmacol Ther. 2010;88:818–23.

Article  CAS  Google Scholar 

Pavlović N, Goločorbin-Kon S, Ðanić M, Stanimirov B, Al-Salami H, Stankov K, et al. Bile acids and their derivatives as potential modifiers of drug release and pharmacokinetic profiles. Front Pharmacol. 2018;9:1283.

Article  Google Scholar 

Lubberman FJE, Gelderblom H, Hamberg P, Vervenne WL, Mulder SF, Jansman FGA, et al. The effect of using pazopanib with food vs. fasted on pharmacokinetics, patient safety, and preference (DIET Study). Clin Pharmacol Ther. 2019;106(5):1076–82.

Article  CAS  Google Scholar 

Devriese LA, Koch KM, Mergui-Roelvink M, Matthys GM, Ma WW, Robidoux A, et al. Effects of low-fat and high-fat meals on steady-state pharmacokinetics of lapatinib in patients with advanced solid tumours. Invest New Drugs. 2014;32:481–8.

Article  CAS  Google Scholar 

Tsuda M, Ishiguro H, Toriguchi N, Masuda N, Bando H, Ohgami M, et al. Overnight fasting before lapatinib administration to breast cancer patients leads to reduced toxicity compared with nighttime dosing: a retrospective cohort study from a randomized clinical trial. Cancer Med. 2020;9:9246–55.

Article  CAS  Google Scholar 

van Leeuwen RWF, Jansman FGA, Hunfeld NG, Peric R, Reyners AKL, Imholz ALT, et al. Tyrosine kinase inhibitors and proton pump inhibitors: an evaluation of treatment options. Clin Pharmacokinet. 2017;56:683–8.

Article  Google Scholar 

van Leeuwen RWF, Peric R, Hussaarts KGAM, Kienhuis E, IJzerman NS, de Bruijn P, et al. Influence of the acidic beverage cola on the absorption of erlotinib in patients with non–small-cell lung cancer. J Clin Oncol. 2016;34:1309–14.

Article  Google Scholar 

Knoebel RW, Larson RA. Pepsi® or Coke®? Influence of acid on dasatinib absorption. J Oncol Pharm Pract. 2018;24:156–8.

Article  CAS  Google Scholar 

Mir O, Touati N, Lia M, Litière S, Le Cesne A, Sleijfer S, et al. Impact of concomitant administration of gastric acid-suppressive agents and pazopanib on outcomes in soft-tissue sarcoma patients treated within the EORTC 62043/62072 trials. Clin Cancer Res. 2019;25:1479–85.

Article  CAS  Google Scholar 

Benet LZ, Hoener B-A. Changes in plasma protein binding have little clinical relevance. Clin Pharmacol Ther. 2002;71:115–21.

Article  CAS  Google Scholar 

Berezhkovskiy LM. On the influence of protein binding on pharmacological activity of drugs. J Pharm Sci. 2010;99:2153–65.

Article  CAS  Google Scholar 

Budha NR, Frymoyer A, Smelick GS, Jin JY, Yago MR, Dresser MJ, et al. Drug absorption interactions between oral targeted anticancer agents and PPIs: is pH-dependent solubility the Achilles heel of targeted therapy? Clin Pharmacol Ther. 2012;92:203–13.

Article  CAS  Google Scholar 

Hornecker M, Blanchet B, Billemont B, Sassi H, Ropert S, Taieb F, et al. Saturable absorption of sorafenib in patients with solid tumors: a population model. Invest New Drugs. 2012;30:1991–2000.

Article  CAS  Google Scholar 

Hurwitz HI, Dowlati A, Saini S, Savage S, Suttle AB, Gibson DM, et al. Phase I trial of pazopanib in patients with advanced cancer. Clin Cancer Res. 2009;15:4220–7.

Article  CAS  Google Scholar 

Groenland SL, van Eerden RAG, Verheijen RB, de Vries N, Thijssen B, Rosing H, et al. Cost-neutral optimization of pazopanib exposure by splitting intake moments: a prospective pharmacokinetic study in cancer patients. Clin Pharmacokinet. 2020;59:941–8.

Article  CAS  Google Scholar 

Dallinger C, Trommeshauser D, Marzin K, Liesener A, Kaiser R, Stopfer P. Pharmacokinetic properties of nintedanib in healthy volunteers and patients with advanced cancer. J Clin Pharmacol. 2016;56:1387–94.

留言 (0)

沒有登入
gif