Starvation alters gut microbiome and mitigates off-flavors in largemouth bass (Micropterus salmoides)

Anderson MJ (2001) A new method for non-parametric multivariate analysis of variance. Austral Ecol 26:32–46. https://doi.org/10.1111/j.1442-9993.2001.01070.pp.x

Article  Google Scholar 

Bäckhed F, Ding H, Wang T et al (2004) The gut microbiota as an environmental factor that regulates fat storage. Proc Natl Acad Sci USA 101:15718–15723. https://doi.org/10.1073/pnas.0407076101

Article  CAS  Google Scholar 

Brown K, DeCoffe D, Molcan E et al (2012) Diet-induced dysbiosis of the intestinal microbiota and the effects on immunity and disease. Nutrients 4. https://doi.org/10.3390/nu4081095

Burr GS, Wolters WR, Schrader KK et al (2012) Impact of depuration of earthy-musty off-flavors on fillet quality of Atlantic salmon, Salmo salar, cultured in a recirculating aquaculture system. Aquac Eng 50:28–36. https://doi.org/10.1016/j.aquaeng.2012.03.002

Article  Google Scholar 

Callahan BJ, McMurdie PJ, Rosen MJ et al (2016) DADA2: high-resolution sample inference from Illumina amplicon data. Nat Methods 13:581–583. https://doi.org/10.1038/nmeth.3869

Article  CAS  Google Scholar 

Chi C, Lin Y, Miao L et al (2022) Effects of dietary supplementation of a mixture of ferulic acid and probiotics on the fillet quality of Megalobrama amblycephala fed with oxidized oil. Aquaculture 549:737786. https://doi.org/10.1016/j.aquaculture.2021.737786

Article  CAS  Google Scholar 

Dai WF, Zhang JJ, Qiu QF et al (2018) Starvation stress affects the interplay among shrimp gut microbiota, digestion and immune activities. Fish Shellfish Immunol 80:191–199. https://doi.org/10.1016/j.fsi.2018.05.040

Article  Google Scholar 

Davidson J, Schrader K, Ruan E et al (2014) Evaluation of depuration procedures to mitigate the off-flavor compounds geosmin and 2-methylisoborneol from Atlantic salmon Salmo salar raised to market-size in recirculating aquaculture systems. Aquac Eng 61:27–34. https://doi.org/10.1016/j.aquaeng.2014.05.006

Article  Google Scholar 

Dehler CE, Secombes CJ, Martin SAM (2017) Environmental and physiological factors shape the gut microbiota of Atlantic salmon parr (Salmo salar L.). Aquaculture 467:149–157. https://doi.org/10.1016/j.aquaculture.2016.07.017

Article  CAS  Google Scholar 

Dhanasiri AKS, Brunvold L, Brinchmann MF et al (2011) Changes in the intestinal microbiota of wild Atlantic cod Gadus morhua L. upon captive rearing. Microb Ecol 61:20–30. https://doi.org/10.1007/s00248-010-9673-y

Article  Google Scholar 

Douglas GM, Maffei VJ, Zaneveld JR et al (2020) PICRUSt2 for prediction of metagenome functions. Nat Biotechnol 38:685–688. https://doi.org/10.1038/s41587-020-0548-6

Article  CAS  Google Scholar 

Eichmiller JJ, Hamilton MJ, Staley C et al (2016) Environment shapes the fecal microbiome of invasive carp species. Microbiome 4:44. https://doi.org/10.1186/s40168-016-0190-1

Article  Google Scholar 

Foysal MJ, Fotedar R, Tay ACY et al (2020) Effects of long-term starvation on health indices, gut microbiota and innate immune response of fresh water crayfish, marron (Cherax cainii, Austin 2002). Aquaculture 514:734444. https://doi.org/10.1016/j.aquaculture.2019.734444

Article  Google Scholar 

Hao YT, Wu SG, Xiong F et al (2017) Succession and fermentation products of grass carp (Ctenopharyngodon idellus) hindgut microbiota in response to an extreme dietary shift. Front Microbiol 8. https://doi.org/10.3389/fmicb.2017.01585

Hennersdorf P, Kleinertz S, Theisen S et al (2016) Microbial diversity and parasitic load in tropical fish of different environmental conditions. PLoS ONE 11:e0151594. https://doi.org/10.1371/journal.pone.0151594

Article  CAS  Google Scholar 

Holben WE, Williams P, Saarinen M et al (2002) Phylogenetic analysis of intestinal microflora indicates a novel Mycoplasma phylotype in farmed and wild salmon. Microb Ecol 44:175–185. https://doi.org/10.1007/s00248-002-1011-6

Article  CAS  Google Scholar 

Jawahar J, McCumber AW, Lickwar CR et al (2022) Starvation causes changes in the intestinal transcriptome and microbiome that are reversed upon refeeding. BMC Genom 23:225. https://doi.org/10.1186/s12864-022-08447-2

Article  CAS  Google Scholar 

Kanehisa M (2019) Toward understanding the origin and evolution of cellular organisms. Protein Sci 28:1947–1951. https://doi.org/10.1002/pro.3715

Article  CAS  Google Scholar 

Kanehisa M, Goto S (2000) KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res 28:27–30. https://doi.org/10.1093/nar/28.1.27

Article  CAS  Google Scholar 

Kanehisa M, Sato Y, Furumichi M et al (2018) New approach for understanding genome variations in KEGG. Nucleic Acids Res 47:D590–D595. https://doi.org/10.1093/nar/gky962

Article  CAS  Google Scholar 

Karl JP, Hatch AM, Arcidiacono SM et al (2018) Effects of psychological, environmental and physical stressors on the gut microbiota. Front Microbiol 9. https://doi.org/10.3389/fmicb.2018.02013

Kohl K, Amaya J, Passement CA et al (2014) Unique and shared responses of the gut microbiota to prolonged fasting: a comparative study across five classes of vertebrate hosts. FEMS Microbiol Ecol 90:883–894. https://doi.org/10.1111/1574-6941.12442

Article  CAS  Google Scholar 

Langille MGI, Zaneveld J, Caporaso JG et al (2013) Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nat Biotechnol 31:814–821. https://doi.org/10.1038/nbt.2676

Article  CAS  Google Scholar 

Larsen AM, Mohammed HH, Arias CR (2014) Characterization of the gut microbiota of three commercially valuable warmwater fish species. J Appl Microbiol 116:1396–1404. https://doi.org/10.1111/jam.12475

Article  CAS  Google Scholar 

LeBlanc JG, Milani C, de Giori GS et al (2013) Bacteria as vitamin suppliers to their host: a gut microbiota perspective. Curr Opin Biotechnol 24:160–168. https://doi.org/10.1016/j.copbio.2012.08.005

Article  CAS  Google Scholar 

Lee GC, Kim YS, Kim MJ et al (2011) Presence, molecular characteristics and geosmin producing ability of Actinomycetes isolated from South Korean terrestrial and aquatic environments. Water Sci Technol 63:2745–2751. https://doi.org/10.2166/wst.2011.610

Article  CAS  Google Scholar 

Lin G, Lin X (2022) Bait input altered microbial community structure and increased greenhouse gases production in coastal wetland sediment. Water Res 218:118520. https://doi.org/10.1016/j.watres.2022.118520

Article  CAS  Google Scholar 

Lin SM, Zhou XM, Zhou YL et al (2020) Intestinal morphology, immunity and microbiota response to dietary fibers in largemouth bass, Micropterus salmoide. Fish Shellfish Immunol 103:135–142. https://doi.org/10.1016/j.fsi.2020.04.070

Article  CAS  Google Scholar 

Liu X, Shi H, He Q et al (2020) Effect of starvation and refeeding on growth, gut microbiota and non-specific immunity in hybrid grouper (Epinephelus fuscoguttatus♀×E. lanceolatus♂). Fish Shellfish Immunol 97:182–193. https://doi.org/10.1016/j.fsi.2019.11.055

Liu Q, Lai Z, Gao Y et al (2021) Connection between the gut microbiota of largemouth bass (Micropterus salmoides) and microbiota of the pond culture environment. Microorganisms 9. https://doi.org/10.3390/microorganisms9081770

Love MI, Huber W, Anders S (2014) Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 15:550. https://doi.org/10.1186/s13059-014-0550-8

Article  CAS  Google Scholar 

Lukassen MB, de Jonge N, Bjerregaard SM et al (2019) Microbial production of the off-flavor geosmin in tilapia production in brazilian water reservoirs: importance of bacteria in the intestine and other fish-associated environments. Front Microbiol 10. https://doi.org/10.3389/fmicb.2019.02447

Lv H, Hu W, Xiong S et al (2018) Depuration and starvation improves flesh quality of grass carp (Ctenopharyngodon idella). Aquaculture Res 49:3196–3206. https://doi.org/10.1111/are.13784

Article  CAS  Google Scholar 

Martin M (2011) Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J 17:3. https://doi.org/10.14806/ej.17.1.200

Mekuchi M, Asakura T, Sakata K et al (2018) Intestinal microbiota composition is altered according to nutritional biorhythms in the leopard coral grouper (Plectropomus leopardus). PLoS ONE 13:e0197256. https://doi.org/10.1371/journal.pone.0197256

Article  CAS  Google Scholar 

Molina-Cárdenas CA, Sánchez-Saavedra MdP (2017) Inhibitory effect of benthic diatom species on three aquaculture pathogenic vibrios. Algal Res 27:131–139. https://doi.org/10.1016/j.algal.2017.09.004

Article  Google Scholar 

Nayak SK (2010) Role of gastrointestinal microbiota in fish. Aquaculture Res 41:1553–1573. https://doi.org/10.1111/j.1365-2109.2010.02546.x

Article  Google Scholar 

Ni J, Yu Y, Zhang T et al (2012) Comparison of intestinal bacterial communities in grass carp, Ctenopharyngodon idellus, from two different habitats. Chin J Oceanol Limnol 30:757–765. https://doi.org/10.1007/s00343-012-1287-4

Article  Google Scholar 

Ofek T, Lalzar M, Laviad-Shitrit S et al (2021) Comparative study of intestinal microbiota composition of six edible fish species. Front Microbiol 12. https://doi.org/10.3389/fmicb.2021.760266

Ottman N, Smidt H, de Vos W et al (2012) The function of our microbiota: who is out there and what do they do? Front Cell Infect Microbiol 2. https://doi.org/10.3389/fcimb.2012.00104

Pan Y, Xu L, Cao W et al (2009) Actinomycetes and earthy-musty odorous compounds in brackish fishponds in Tianjin, China. Water Sci Technol 59:1185–1194. https://doi.org/10.2166/wst.2009.035

Article  Google Scholar 

Petersen MA, Hyldig G, Strobel BW et al (2011) Chemical and sensory quantification of geosmin and 2-methylisoborneol in rainbow trout (Oncorhynchus mykiss) from recirculated aquacultures in relation to concentrations in basin water. J Agric Food Chem 59:12561–12568. https://doi.org/10.1021/jf2033494

Article  CAS  Google Scholar 

R Core Team (2018) R: a language and environment for statistical computing

Rodriguez-R LM, Konstantinidis KT (2014) Estimating coverage in metagenomic data sets and why it matters. ISME J 8:2349–2351. https://doi.org/10.1038/ismej.2014.76

Article  Google Scholar 

Sakyi ME, Cai J, Tang J et al (2020a) Effects of starvation and subsequent re-feeding on intestinal microbiota, and metabolic responses in Nile tilapia. Oreochromis Niloticus Aquac Rep 17:100370. https://doi.org/10.1016/j.aqrep.2020.100370

Article  Google Scholar 

Sakyi ME, Cai J, Tang J et al (2020b) Short term starvation and re-feeding in Nile tilapia (Oreochromis niloticus, Linnaeus 1758): growth measurements, and immune responses. Aquac Rep 16:100261. https://doi.org/10.1016/j.aqrep.2019.100261

Article  Google Scholar 

Semova I, Carten Juliana D, Stombaugh J et al (2012) Microbiota regulate intestinal absorption and metabolism of fatty acids in the zebrafish. Cell Host Microbe 12:277–288. https://doi.org/10.1016/j.chom.2012.08.003

Article  CAS  Google Scholar 

Shastry RP, Rekha PD (2021) Bacterial cross talk with gut microbiome and its implications: a short review. Folia Microbiol 66:15–24. https://doi.org/10.1007/s12223-020-00821-5

Article  CAS  Google Scholar 

Sun S, Su Y, Yu H et al (2020) Starvation affects the intestinal microbiota structure and the expression of inflammatory-related genes of the juvenile blunt snout bream. Megalobrama Amblycephala Aquaculture 517:734764. https://doi.org/10.1016/j.aquaculture.2019.734764

Article  CAS  Google Scholar 

Tan LTH, Chan KG, Lee LH et al (2016) Streptomyces bacteria as potential probiotics in aquaculture. Front Microbiol 7. https://doi.org/10.3389/fmicb.2016.00079

Tran NT, Xiong F, Hao YT et al (2018) Starvation influences the microbiota assembly and expression of immunity-related genes in the intestine of grass carp (Ctenopharyngodon idellus). Aquaculture 489:121–129. https://doi.org/10.1016/j.aquaculture.2018.02.016

Article  CAS  Google Scholar 

Tremaroli V, Bäckhed F (2012) Functional interactions between the gut microbiota and host metabolism. Nature 489:242–249. https://doi.org/10.1038/nature11552

Article  CAS 

留言 (0)

沒有登入
gif