Tumor ratio of unsaturated to saturated sulfatide species is associated with disease-free survival in intrahepatic cholangiocarcinoma

J.M. Banales, V. Cardinale, G. Carpino, M. Marzioni, J.B. Andersen, P. Invernizzi, G.E. Lind, T. Folseraas, S.J. Forbes, L. Fouassier, A. Geier, D.F. Calvisi, J.C. Mertens, M. Trauner, A. Benedetti, L. Maroni, J. Vaquero, R.I. Macias, C. Raggi, M.J. Perugorria, E. Gaudio, K.M. Boberg, J.J. Marin, D. Alvaro, Expert consensus document: Cholangiocarcinoma: current knowledge and future perspectives consensus statement from the European Network for the Study of Cholangiocarcinoma (ENS-CCA). Nat. Rev. Gastroenterol. Hepatol. 13, 261–280 (2016). https://doi.org/10.1038/nrgastro.2016.51

Article  Google Scholar 

S. Rizvi, G.J. Gores, Emerging molecular therapeutic targets for cholangiocarcinoma. J. Hepatol. 67, 632–644 (2017). https://doi.org/10.1016/j.jhep.2017.03.026

Article  CAS  Google Scholar 

B. Flinders, L.R.S. Huizing, M. van Heerden, F. Cuyckens, U.P. Neumann, L.J.W. van der Laan, S.W.M. OldeDamink, R.M.A. Heeren, F.G. Schaap, R.J. Vreeken, Cross-species molecular imaging of bile salts and lipids in liver: identification of molecular structural markers in health and disease. Anal. Chem. 90, 11835–11846 (2018). https://doi.org/10.1021/acs.analchem.8b01378

Article  CAS  Google Scholar 

S. Xiao, C.V. Finkielstein, D.G. Capelluto, The enigmatic role of sulfatides: new insights into cellular functions and mechanisms of protein recognition. Adv. Exp. Med. Biol. 991, 27–40 (2013). https://doi.org/10.1007/978-94-007-6331-9_3

Article  CAS  Google Scholar 

J. Suchanski, J. Grzegrzolka, T. Owczarek, P. Pasikowski, A. Piotrowska, B. Kocbach, A. Nowak, P. Dziegiel, A. Wojnar, M. Ugorski, Sulfatide decreases the resistance to stress-induced apoptosis and increases P-selectin-mediated adhesion: a two-edged sword in breast cancer progression. Breast Cancer Res. 20, 133 (2018). https://doi.org/10.1186/s13058-018-1058-z

Article  CAS  Google Scholar 

T. Takahashi, T. Suzuki, Role of sulfatide in normal and pathological cells and tissues. J. Lipid Res. 53, 1437–1450 (2012). https://doi.org/10.1194/jlr.R026682

Article  CAS  Google Scholar 

M.M. Grimsrud, T. Folseraas, Pathogenesis, diagnosis and treatment of premalignant and malignant stages of cholangiocarcinoma in primary sclerosing cholangitis. Liver Int. 39, 2230–2237 (2019). https://doi.org/10.1111/liv.14180

Article  Google Scholar 

R. Nganga, N. Oleinik, B. Ogretmen, Mechanisms of ceramide-dependent cancer cell death. Adv. Cancer Res. 140, 1–25 (2018). https://doi.org/10.1016/bs.acr.2018.04.007

Article  CAS  Google Scholar 

K. Moro, T. Kawaguchi, J. Tsuchida, E. Gabriel, Q. Qi, L. Yan, T. Wakai, K. Takabe, M. Nagahashi, Ceramide species are elevated in human breast cancer and are associated with less aggressiveness. Oncotarget 9, 19874–19890 (2018). https://doi.org/10.18632/oncotarget.24903

Article  Google Scholar 

F. Aoudjit, K. Vuori, Integrin signaling in cancer cell survival and chemoresistance. Chemother. Res. Pract. 2012, 283181–283181 (2012). https://doi.org/10.1155/2012/283181

Article  CAS  Google Scholar 

E.J. Salustiano, K.M. da Costa, L. Freire-de-Lima, L. Mendonça-Previato, J.O. Previato, Inhibition of glycosphingolipid biosynthesis reverts multidrug resistance by differentially modulating ABC transporters in chronic myeloid leukemias. J. Biol. Chem. 295, 6457–6471 (2020). https://doi.org/10.1074/jbc.RA120.013090

Article  CAS  Google Scholar 

C.M. Robinson, B.P.K. Poon, Y. Kano, F.G. Pluthero, W.H.A. Kahr, M. Ohh, A hypoxia-inducible HIF1-GAL3ST1-sulfatide axis enhances ccRCC immune evasion via increased tumor cell-platelet binding. Mol. Cancer Res. 17, 2306–2317 (2019). https://doi.org/10.1158/1541-7786.Mcr-19-0461

Article  CAS  Google Scholar 

K. Honke, M. Tsuda, Y. Hirahara, N. Miyao, T. Tsukamoto, M. Satoh, Y. Wada, Cancer-associated expression of glycolipid sulfotransferase gene in human renal cell carcinoma cells. Cancer Res. 58, 3800–3805 (1998)

CAS  Google Scholar 

I.C. Kim, G. Bang, J.H. Lee, K.P. Kim, Y.H. Kim, H.K. Kim, J. Chung, Low C24-OH and C22-OH sulfatides in human renal cell carcinoma. J. Mass Spectrom. 49, 409–416 (2014). https://doi.org/10.1002/jms.3358

Article  CAS  Google Scholar 

N. Sakakibara, S. Gasa, K. Kamio, A. Makita, T. Koyanagi, Association of elevated sulfatides and sulfotransferase activities with human renal cell carcinoma. Cancer Res. 49, 335–339 (1989)

CAS  Google Scholar 

A. Silsirivanit, C. Phoomak, K. Teeravirote, S. Wattanavises, W. Seubwai, C. Saengboonmee, Z. Zhan, J.I. Inokuchi, A. Suzuki, S. Wongkham, Overexpression of HexCer and LacCer containing 2-hydroxylated fatty acids in cholangiocarcinoma and the association of the increase of LacCer (d18:1–h23:0) with shorter survival of the patients. Glycoconj. J. 36, 103–111 (2019). https://doi.org/10.1007/s10719-019-09864-4

Article  CAS  Google Scholar 

N. OgrincPotocnik, T. Porta, M. Becker, R.M. Heeren, S.R. Ellis, Use of advantageous, volatile matrices enabled by next-generation high-speed matrix-assisted laser desorption/ionization time-of-flight imaging employing a scanning laser beam. Rapid. Commun. Mass Spectrom. 29, 2195–2203 (2015). https://doi.org/10.1002/rcm.7379

Article  CAS  Google Scholar 

S.O. Deininger, D.S. Cornett, R. Paape, M. Becker, C. Pineau, S. Rauser, A. Walch, E. Wolski, Normalization in MALDI-TOF imaging datasets of proteins: practical considerations. Anal. Bioanal. Chem. 401, 167–181 (2011). https://doi.org/10.1007/s00216-011-4929-z

Article  CAS  Google Scholar 

M.B. Comisarow, A.G. Marshall, Fourier transform ion cyclotron resonance spectroscopy. Chem. Phys. Lett. 25, 282–283 (1974). https://doi.org/10.1016/0009-2614(74)89137-2

Article  CAS  Google Scholar 

S.R. Kronewitter, M.L. De Leoz, J.S. Strum, H.J. An, L.M. Dimapasoc, A. Guerrero, S. Miyamoto, C.B. Lebrilla, G.S. Leiserowitz, The glycolyzer: automated glycan annotation software for high performance mass spectrometry and its application to ovarian cancer glycan biomarker discovery. Proteomics 12, 2523–2538 (2012). https://doi.org/10.1002/pmic.201100273

Article  CAS  Google Scholar 

M. Levy, A.H. Futerman, Mammalian ceramide synthases. IUBMB Life 62, 347–356 (2010). https://doi.org/10.1002/iub.319

Article  CAS  Google Scholar 

N. Scaglia, J.W. Chisholm, R.A. Igal, Inhibition of StearoylCoA Desaturase-1 inactivates Acetyl-CoA carboxylase and impairs proliferation in cancer cells: role of AMPK. PLoS ONE 4, e6812 (2009). https://doi.org/10.1371/journal.pone.0006812

Article  CAS  Google Scholar 

Z. Tracz-Gaszewska, P. Dobrzyn, Stearoyl-CoA desaturase 1 as a therapeutic target for the treatment of cancer. Cancers (Basel) 11, (2019). https://doi.org/10.3390/cancers11070948

A. Daemen, D. Peterson, N. Sahu, R. McCord, X. Du, B. Liu, K. Kowanetz, R. Hong, J. Moffat, M. Gao, A. Boudreau, R. Mroue, L. Corson, T. O’Brien, J. Qing, D. Sampath, M. Merchant, R. Yauch, G. Manning, J. Settleman, G. Hatzivassiliou, M. Evangelista, Metabolite profiling stratifies pancreatic ductal adenocarcinomas into subtypes with distinct sensitivities to metabolic inhibitors. Proc. Natl. Acad. Sci. U. S. A. 112, E4410-4417 (2015). https://doi.org/10.1073/pnas.1501605112

Article  CAS  Google Scholar 

M.M. Siddique, Y. Li, B. Chaurasia, V.A. Kaddai, S.A. Summers, Dihydroceramides: from bit players to lead actors. J. Biol. Chem. 290, 15371–15379 (2015). https://doi.org/10.1074/jbc.R115.653204

Article  CAS  Google Scholar 

S. Gerbig, O. Golf, J. Balog, J. Denes, Z. Baranyai, A. Zarand, E. Raso, J. Timar, Z. Takats, Analysis of colorectal adenocarcinoma tissue by desorption electrospray ionization mass spectrometric imaging. Anal. Bioanal. Chem. 403, 2315–2325 (2012). https://doi.org/10.1007/s00216-012-5841-x

Article  CAS  Google Scholar 

H. Morichika, Y. Hamanaka, T. Tai, I. Ishizuka, Sulfatides as a predictive factor of lymph node metastasis in patients with colorectal adenocarcinoma. Cancer 78, 43–47 (1996). https://doi.org/10.1002/(sici)1097-0142(19960701)78:1%3c43::Aid-cncr8%3e3.0.Co;2-i

Article  CAS  Google Scholar 

Y. Liu, Y. Chen, A. Momin, R. Shaner, E. Wang, N.J. Bowen, L.V. Matyunina, L.D. Walker, J.F. McDonald, M.C. Sullards, A.H. Merrill Jr., Elevation of sulfatides in ovarian cancer: an integrated transcriptomic and lipidomic analysis including tissue-imaging mass spectrometry. Mol. Cancer 9, 186 (2010). https://doi.org/10.1186/1476-4598-9-186

Article  CAS  Google Scholar 

S. Porubsky, M. Nientiedt, M.C. Kriegmair, J.H. Siemoneit, R. Sandhoff, R. Jennemann, H. Borgmann, T. Gaiser, C.A. Weis, P. Erben, T. Hielscher, Z.V. Popovic, The prognostic value of galactosylceramide-sulfotransferase (Gal3ST1) in human renal cell carcinoma. Sci. Rep. 11, 10926 (2021). https://doi.org/10.1038/s41598-021-90381-6

Article  CAS  Google Scholar 

X. Dai, S. Zhang, H. Cheng, D. Cai, X. Chen, Z. Huang, FA2H exhibits tumor suppressive roles on breast cancers via cancer stemness control. Front. Oncol. 9, 1089 (2019). https://doi.org/10.3389/fonc.2019.01089

Article  Google Scholar 

H. Hama, Fatty acid 2-Hydroxylation in mammalian sphingolipid biology. Biochim. Biophys. Acta 1801, 405–414 (2010). https://doi.org/10.1016/j.bbalip.2009.12.004

Article  CAS  Google Scholar 

A.B. Herrero, A.M. Astudillo, M.A. Balboa, C. Cuevas, J. Balsinde, S. Moreno, Levels of SCS7/FA2H-mediated fatty acid 2-hydroxylation determine the sensitivity of cells to antitumor PM02734. Cancer Res. 68, 9779–9787 (2008). https://doi.org/10.1158/0008-5472.Can-08-1981

Article  CAS  Google Scholar 

A.M. Lemay, O. Courtemanche, T.A. Couttas, G. Jamsari, A. Gagné, Y. Bossé, P. Joubert, A.S. Don, D. Marsolais, High FA2H and UGT8 transcript levels predict hydroxylated hexosylceramide accumulation in lung adenocarcinoma. J. Lipid Res. 60, 1776–1786 (2019). https://doi.org/10.1194/jlr.M093955

Article  CAS  Google Scholar 

M. Ugorski, P. Påhlsson, D. Dus, B. Nilsson, C. Radzikowski, Glycosphingolipids of human urothelial cell lines with different grades of transformation. Glycoconj. J. 6, 303–318 (1989). https://doi.org/10.1007/bf01047850

Article  CAS  Google Scholar 

Y. Yao, X. Yang, L. Sun, S. Sun, X. Huang, D. Zhou, T. Li, W. Zhang, N.A. Abumrad, X. Zhu, S. He, X. Su, Fatty acid 2-hydroxylation inhibits tumor growth and increases sensitivity to cisplatin in gastric cancer. EBioMedicine 41, 256–267 (2019). https://doi.org/10.1016/j.ebiom.2019.01.066

Article  Google Scholar 

L. Sun, X. Yang, X. Huang, Y. Yao, X. Wei, S. Yang, D. Zhou, W. Zhang, Z. Long, X. Xu, X. Zhu, S. He, X. Su, 2-Hydroxylation of fatty acids represses colorectal tumorigenesis and metastasis via the YAP transcriptional axis. Cancer Res. 81, 289–302 (2021). https://doi.org/10.1158/0008-5472.Can-20-1517

Article  CAS  Google Scholar 

J. Bridgewater, P.R. Galle, S.A. Khan, J.M. Llovet, J.W. Park, T. Patel, T.M. Pawlik, G.J. Gores, Guidelines for the diagnosis and management of intrahepatic cholangiocarcinoma. J. Hepatol. 60, 1268–1289 (2014). https://doi.org/10.1016/j.jhep.2014.01.021

Article  Google Scholar 

M. Komuta, Histological heterogeneity of primary liver cancers: clinical relevance, diagnostic pitfalls and the pathologist's role. Cancers (Basel) 13, (2021). https://doi.org/10.3390/cancers13122871

Y.W. Dong, R. Wang, Q.Q. Cai, B. Qi, W. Wu, Y.H. Zhang, X.Z. Wu, Sulfatide epigenetically regulates miR-223 and promotes the migration of human hepatocellular carcinoma cells. J. Hepatol. 60, 792–801 (2014). https://doi.org/10.1016/j.jhep.2013.12.004

Article  CAS  Google Scholar 

Q. Cao, X. Chen, X. Wu, R. Liao, P. Huang, Y. Tan, L. Wang, G. Ren, J. Huang, C. Dong, Inhibition of UGT8 suppresses basal-like breast cancer progression by attenuating sulfatide-αVβ5 axis. J. Exp. Med. 215, 1679–1692 (2018). https://doi.org/10.1084/jem.20172048

Article  CAS 

留言 (0)

沒有登入
gif