Mesenchymal stromal cell senescence in haematological malignancies

Welch, J. S., Ley, T. J., Link, D. C., Miller, C. A., Larson, D. E., Koboldt, D. C., Wartman, L. D., Lamprecht, T. L., Liu, F., Xia, J., Kandoth, C., Fulton, R. S., McLellan, M. D., Dooling, D. J., Wallis, J. W., Chen, K., Harris, C. C., Schmidt, H. K., Kalicki-Veizer, J. M., Lu, C., et al. (2012). The origin and evolution of mutations in acute myeloid leukemia. Cell, 150(2), 264–278. https://doi.org/10.1016/j.cell.2012.06.023

Article  Google Scholar 

Steensma, D. P., Bejar, R., Jaiswal, S., Lindsley, R. C., Sekeres, M. A., Hasserjian, R. P., & Ebert, B. L. (2015). Clonal hematopoiesis of indeterminate potential and its distinction from myelodysplastic syndromes. Blood, 126(1), 9–16. https://doi.org/10.1182/blood-2015-03-631747

Article  Google Scholar 

Jaiswal, S., Fontanillas, P., Flannick, J., Manning, A., Grauman, P., Mar, B. G., Lindsley, R. C., Mermel, C., Burtt, N., Chavez, A., Higgins, J. M., Moltchanov, V., Kinnunen, L., Koistinen, H., Ladenvall, C., Getz, G., Correa, A., Gabriel, S., Kathiresan, S., Stringham, H., et al. (2014). Clonal hematopoiesis with somatic mutations is a common, age-related condition associated with adverse outcomes. Blood, 124(21), 840. https://doi.org/10.1056/NEJMoa1408617

Article  Google Scholar 

Young, A. L., Challen, G. A., Birmann, B. M., & Druley, T. E. (2016). Clonal haematopoiesis harbouring AML-associated mutations is ubiquitous in healthy adults. Nature Communucations, 7, 12484. https://doi.org/10.1038/ncomms12484

Article  Google Scholar 

Veiga, C. B., Lawrence, E. M., Murphy, A. J., Herold, M. J., & Dragoljevic, D. (2021). Myelodysplasia syndrome, clonal hematopoiesis and cardiovascular disease. Cancers, 13(8), 1968. https://doi.org/10.3390/cancers13081968

Strati, P., & Shanafelt, T. D. (2015). Monoclonal B-cell lymphocytosis and early-stage chronic lymphocytic leukemia: Diagnosis, natural history, and risk stratification. Blood, 126(4), 454–462. https://doi.org/10.1182/blood-2015-02-585059

Article  Google Scholar 

Kyle, R. A., Larson, D. R., Therneau, T. M., Dispenzieri, A., Kumar, S., Cerhan, J. R., & Rajkumar, S. V. (2018). Long-term follow-up of monoclonal gammopathy of undetermined significance. New England Journal of Medicine, 378(3), 241–249. https://doi.org/10.1056/NEJMoa1709974

Article  Google Scholar 

Genovese, G., Kahler, A. K., Handsaker, R. E., Lindberg, J., Rose, S. A., Bakhoum, S. F., Chambert, K., Mick, E., Neale, B. M., Fromer, M., Purcell, S. M., Svantesson, O., Landen, M., Hoglund, M., Lehmann, S., Gabriel, S. B., Moran, J. L., Lander, E. S., Sullivan, P. F., Sklar, P., et al. (2014). Clonal hematopoiesis and blood-cancer risk inferred from blood DNA sequence. New England Journal of Medicine, 371(26), 2477–2487. https://doi.org/10.1056/NEJMoa1409405

Article  Google Scholar 

Ma, X., Does, M., Raza, A., & Mayne, S. T. (2007). Myelodysplastic syndromes: Incidence and survival in the United States. Cancer, 109(8), 1536–1542. https://doi.org/10.1002/cncr.22570

Article  Google Scholar 

Shim, Y. K., Middleton, D. C., Caporaso, N. E., Rachel, J. M., Landgren, O., Abbasi, F., Raveche, E. S., Rawstron, A. C., Orfao, A., Marti, G. E., & Vogt, R. F. (2010). Prevalence of monoclonal B-cell lymphocytosis: a systematic review. Cytometry. Part B: Clinical Cytometry, 78. https://doi.org/10.1002/cyto.b.20538

Kyle, R. A., Therneau, T. M., Rajkumar, S. V., Larson, D. R., Plevak, M. F., Offord, J. R., Dispenzieri, A., Katzmann, J. A., & Melton, L. J., 3rd. (2006). Prevalence of monoclonal gammopathy of undetermined significance. New England Journal of Medicine, 354(13), 1362–1369. https://doi.org/10.1056/NEJMoa054494

Article  Google Scholar 

Costa, L. J., Brill, I. K., Omel, J., Godby, K., Kumar, S. K., & Brown, E. E. (2017). Recent trends in multiple myeloma incidence and survival by age, race, and ethnicity in the United States. Blood Advances, 1(4), 282–287. https://doi.org/10.1182/bloodadvances.2016002493

Article  Google Scholar 

Hallek, M., Shanafelt, T. D., & Eichhorst, B. (2018). Chronic lymphocytic leukaemia. Lancet, 391(10129), 1524–1537. https://doi.org/10.1016/S0140-6736(18)30422-7

Article  Google Scholar 

Oran, B., & Weisdorf, D. J. (2012). Survival for older patients with acute myeloid leukemia: A population-based study. Haematologica, 97(12), 1916–1924. https://doi.org/10.3324/haematol.2012.066100

Article  Google Scholar 

Rozhok, A. I., Salstrom, J. L., & DeGregori, J. (2014). Stochastic modeling indicates that aging and somatic evolution in the hematopoetic system are driven by non-cell-autonomous processes. Aging, 6(12), 1033–1048. https://doi.org/10.18632/aging.100707

Article  Google Scholar 

Dutta, A. K., Fink, J. L., Grady, J. P., Morgan, G. J., Mullighan, C. G., To, L. B., Hewett, D. R., & Zannettino, A. C. W. (2019). Subclonal evolution in disease progression from MGUS/SMM to multiple myeloma is characterised by clonal stability. Leukemia, 33(2), 457–468. https://doi.org/10.1038/s41375-018-0206-x

Article  Google Scholar 

Das, R., Strowig, T., Verma, R., Koduru, S., Hafemann, A., Hopf, S., Kocoglu, M. H., Borsotti, C., Zhang, L., Branagan, A., Eynon, E., Manz, M. G., Flavell, R. A., & Dhodapkar, M. V. (2016). Microenvironment-dependent growth of preneoplastic and malignant plasma cells in humanized mice. Nature Medicine, 22(11), 1351–1357. https://doi.org/10.1038/nm.4202

Article  Google Scholar 

Medyouf, H., Mossner, M., Jann, J.-C., Nolte, F., Raffel, S., Herrmann, C., Lier, A., Eisen, C., Nowak, V., Zens, B., Müdder, K., Klein, C., Obländer, J., Fey, S., Vogler, J., Fabarius, A., Riedl, E., Roehl, H., Kohlmann, A., Staller, M., et al. (2014). Myelodysplastic cells in patients reprogram mesenchymal stromal cells to establish a transplantable stem cell niche disease unit. Cell Stem Cell, 14(6), 824–837. https://doi.org/10.1016/j.stem.2014.02.014

Article  Google Scholar 

Balderman, S. R., Li, A. J., Hoffman, C. M., Frisch, B. J., Goodman, A. N., LaMere, M. W., Georger, M. A., Evans, A. G., Liesveld, J. L., Becker, M. W., & Calvi, L. M. (2016). Targeting of the bone marrow microenvironment improves outcome in a murine model of myelodysplastic syndrome. Blood, 127(5), 616–625. https://doi.org/10.1182/blood-2015-06-653113

Article  Google Scholar 

Baker, D. J., Childs, B. G., Durik, M., Wijers, M. E., Sieben, C. J., Zhong, J., Saltness, A., & R., Jeganathan, K. B., Verzosa, G. C., Pezeshki, A., Khazaie, K., Miller, J. D., & van Deursen, J. M. (2016). Naturally occurring p16Ink4a-positive cells shorten healthy lifespan. Nature, 530, 184. https://doi.org/10.1038/nature16932

Article  Google Scholar 

Jeon, O. H., Kim, C., Laberge, R. M., Demaria, M., Rathod, S., Vasserot, A. P., Chung, J. W., Kim, D. H., Poon, Y., David, N., Baker, D. J., van Deursen, J. M., Campisi, J., & Elisseeff, J. H. (2017). Local clearance of senescent cells attenuates the development of post-traumatic osteoarthritis and creates a pro-regenerative environment. Nature Medicine, 23(6), 775–781. https://doi.org/10.1038/nm.4324

Article  Google Scholar 

Farr, J. N., Fraser, D. G., Wang, H., Jaehn, K., Ogrodnik, M. B., Weivoda, M. M., Drake, M. T., Tchkonia, T., LeBrasseur, N. K., Kirkland, J. L., Bonewald, L. F., Pignolo, R. J., Monroe, D. G., & Khosla, S. (2016). Identification of Senescent Cells in the Bone Microenvironment. Journal of Bone and Mineral Research, 31(11), 1920–1929. https://doi.org/10.1002/jbmr.2892

Article  Google Scholar 

Lawrenson, K., Grun, B., Benjamin, E., Jacobs, I. J., Dafou, D., & Gayther, S. A. (2010). Senescent fibroblasts promote neoplastic transformation of partially transformed ovarian epithelial cells in a three-dimensional model of early stage ovarian cancer. Neoplasia, 12(4), 317–325. https://doi.org/10.1593/neo.91948

Article  Google Scholar 

Krtolica, A., Parrinello, S., Lockett, S., Desprez, P. Y., & Campisi, J. (2001). Senescent fibroblasts promote epithelial cell growth and tumorigenesis: A link between cancer and aging. Proceedings of the National Academy of Sciences of the United States of America, 98(21), 12072–12077. https://doi.org/10.1073/pnas.211053698

Article  Google Scholar 

Coppé, J. P., Patil, C. K., Rodier, F., Krtolica, A., Beauséjour, C. M., Parrinello, S., Hodgson, J. G., Chin, K., Desprez, P. Y., & Campisi, J. (2010). A human-like senescence-associated secretory phenotype is conserved in mouse cells dependent on physiological oxygen. PLoS ONE, 5(2), e9188. https://doi.org/10.1371/journal.pone.0009188

Article  Google Scholar 

Di, G. H., Liu, Y., Lu, Y., Liu, J., Wu, C., & Duan, H. F. (2014). IL-6 secreted from senescent mesenchymal stem cells promotes proliferation and migration of breast cancer cells. PLoS ONE, 9(11), e113572. https://doi.org/10.1371/journal.pone.0113572

Article  Google Scholar 

Laberge, R. M., Sun, Y., Orjalo, A. V., Patil, C. K., Freund, A., Zhou, L., Curran, S. C., Davalos, A. R., Wilson-Edell, K. A., Liu, S., Limbad, C., Demaria, M., Li, P., Hubbard, G. B., Ikeno, Y., Javors, M., Desprez, P. Y., Benz, C. C., Kapahi, P., Nelson, P. S., et al. (2015). MTOR regulates the pro-tumorigenic senescence-associated secretory phenotype by promoting IL1A translation. Nature Cell Biology, 17(8), 1049–1061. https://doi.org/10.1038/ncb3195

Article  Google Scholar 

Liu, D., & Hornsby, P. J. (2007). Senescent human fibroblasts increase the early growth of xenograft tumors via matrix metalloproteinase secretion. Cancer Research, 67(7), 3117–3126. https://doi.org/10.1158/0008-5472.Can-06-3452

Article  Google Scholar 

Luo, X., Fu, Y., Loza, A. J., Murali, B., Leahy, K. M., Ruhland, M. K., Gang, M., Su, X., Zamani, A., Shi, Y., Lavine, K. J., Ornitz, D. M., Weilbaecher, K. N., Long, F., Novack, D. V., Faccio, R., Longmore, G. D., & Stewart, S. A. (2016). Stromal-initiated changes in the bone promote metastatic niche development. Cell Reports, 14(1), 82–92. https://doi.org/10.1016/j.celrep.2015.12.016

Article  Google Scholar 

Dominici, M., Le Blanc, K., Mueller, I., Slaper-Cortenbach, I., Marini, F., Krause, D., Deans, R., Keating, A., Prockop, D., & Horwitz, E. (2006). Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy, 8(4), 315–317. https://doi.org/10.1080/14653240600855905

Article  Google Scholar 

Goulard, M., Dosquet, C., & Bonnet, D. (2018). Role of the microenvironment in myeloid malignancies. Cellular and Molecular Life Sciences, 75(8), 1377–1391. https://doi.org/10.1007/s00018-017-2725-4

Article  Google Scholar 

Mendelson, A., & Frenette, P. S. (2014). Hematopoietic stem cell niche maintenance during homeostasis and regeneration. Nature Medicine, 20(8), 833–846. https://doi.org/10.1038/nm.3647

Article  Google Scholar 

Wei, Q., & Frenette, P. S. (2018). Niches for Hematopoietic Stem Cells and Their Progeny. Immunity, 48(4), 632–648. https://doi.org/10.1016/j.immuni.2018.03.024

Article  Google Scholar 

Mitroulis, I., Kalafati, L., Bornhauser, M., Hajishengallis, G., & Chavakis, T. (2020). Regulation of the bone marrow niche by inflammation. Frontiers in Immunology, 11, 1540. https://doi.org/10.3389/fimmu.2020.01540

Article  Google Scholar 

Passegue, E., Wagers, A. J., Giuriato, S., Anderson, W. C., & Weissman, I. L. (2005). Global analysis of proliferation and cell cycle gene expression in the regulation of hematopoietic stem and progenitor cell fates. Journal of Experimental Medicine, 202(11), 1599–1611. https://doi.org/10.1084/jem.20050967

Article  Google Scholar 

Kunisaki, Y., Bruns, I., Scheiermann, C., Ahmed, J., Pinho, S., Zhang, D., Mizoguchi, T., Wei, Q., Lucas, D., Ito, K., Mar, J. C., Bergman, A., & Frenette, P. S. (2013). Arteriolar niches maintain haematopoietic stem cell quiescence. Nature, 502(7473), 637–643. https://doi.org/10.1038/nature12612

Article  Google Scholar 

Acar, M., Kocherlakota, K. S., Murphy, M. M., Peyer, J. G., Oguro, H., Inra, C. N., Jaiyeola, C., Zhao, Z., Luby-Phelps, K., & Morrison, S. J. (2015). Deep imaging of bone marrow shows non-dividing stem cells are mainly perisinusoidal. Nature, 526(7571), 126–130. https://doi.org/10.1038/nature15250

Article  Google Scholar 

Sugiyama, T., Kohara, H., Noda, M., & Nagasawa, T. (2006). Maintenance of the hematopoietic stem cell pool by CXCL12-CXCR4 chemokine signaling in bone marrow stromal cell niches. Immunity, 25(6), 977–988. https://doi.org/10.1016/j.immuni.2006.10.016

Article  Google Scholar 

Omatsu, Y., Sugiyama, T., Kohara, H., Kondoh, G., Fujii, N., Kohno, K., & Nagasawa, T. (2010). The essential functions of adipo-osteogenic progenitors as the hematopoietic stem and progenitor cell niche. Immunity, 33(3), 387–399. https://doi.org/10.1016/j.immuni.2010.08.017

Article  Google Scholar 

Mendez-Ferrer, S., Michurina, T. V., Ferraro, F., Mazloom, A. R., Macarthur, B. D., Lira, S. A., Scadden, D. T., Ma’ayan, A., Enikolopov, G. N., & Frenette, P. S. (2010). Mesenchymal and haematopoietic stem cells form a unique bone marrow niche. Nature, 466(7308), 829–834. https://doi.org/10.1038/nature09262

Article  Google Scholar 

Zhou, B. O., Yue, R., Murphy, M. M., Peyer, J. G., & Morrison, S. J. (2014). Leptin-receptor-expressing mesenchymal stromal cells represent the main source of bone formed by adult bone marrow. Cell Stem Cell, 15(2), 154–168. https://doi.org/10.1016/j.stem.2014.06.008

Article  Google Scholar 

Lawson, M. A., McDonald, M. M., Kovacic, N., Hua Khoo, W., Terry, R. L., Down, J., Kaplan, W., Paton-Hough, J., Fellows, C., Pettitt, J. A., Neil Dear, T., Van Valckenborgh, E., Baldock, P. A., Rogers, M. J., Eaton, C. L., Vanderkerken, K., Pettit, A. R., Quinn, J. M., Zannettino, A. C., Phan, T. G., et al. (2015). Osteoclasts control reactivation of dormant myeloma cells by remodelling the endosteal niche. Nature Communications, 6, 8983. https://doi.org/10.1038/ncomms9983

Article 

留言 (0)

沒有登入
gif