High-throughput biochemistry in RNA sequence space: predicting structure and function

Tinoco, I. Jr & Bustamante, C. How RNA folds. J. Mol. Biol. 293, 271–281 (1999).

Article  CAS  Google Scholar 

Ganser, L. R., Kelly, M. L., Herschlag, D. & Al-Hashimi, H. M. The roles of structural dynamics in the cellular functions of RNAs. Nat. Rev. Mol. Cell Biol. 20, 474–489 (2019). A comprehensive review that covers how the structural dynamics of RNA control cellular functions.

Article  CAS  Google Scholar 

Al-Hashimi, H. M. & Walter, N. G. RNA dynamics: it is about time. Curr. Opin. Struct. Biol. 18, 321–329 (2008).

Article  CAS  Google Scholar 

Winkler, W., Nahvi, A. & Breaker, R. R. Thiamine derivatives bind messenger RNAs directly to regulate bacterial gene expression. Nature 419, 952–956 (2002).

Article  CAS  Google Scholar 

Mironov, A. S. et al. Sensing small molecules by nascent RNA: a mechanism to control transcription in bacteria. Cell 111, 747–756 (2002).

Article  CAS  Google Scholar 

Batey, R. T., Gilbert, S. D. & Montange, R. K. Structure of a natural guanine-responsive riboswitch complexed with the metabolite hypoxanthine. Nature 432, 411–415 (2004).

Article  CAS  Google Scholar 

Flores, J. K. & Ataide, S. F. Structural changes of RNA in complex with proteins in the SRP. Front. Mol. Biosci. 5, 7 (2018).

Article  Google Scholar 

Shi, H. et al. Rapid and accurate determination of atomistic RNA dynamic ensemble models using NMR and structure prediction. Nat. Commun. 11, 5531 (2020).

Article  CAS  Google Scholar 

Vicens, Q. & Kieft, J. S. Thoughts on how to think (and talk) about RNA structure. Proc. Natl Acad. Sci. USA 119, e2112677119 (2022).

Article  CAS  Google Scholar 

Westhof, E. & Patel, D. J. Nucleic acids. From self-assembly to induced-fit recognition. Curr. Opin. Struct. Biol. 7, 305–309 (1997).

Article  CAS  Google Scholar 

Sussman, J. L., Holbrook, S. R., Warrant, R. W., Church, G. M. & Kim, S. H. Crystal structure of yeast phenylalanine transfer RNA. I. Crystallographic refinement. J. Mol. Biol. 123, 607–630 (1978).

Article  CAS  Google Scholar 

Fürtig, B., Richter, C., Wöhnert, J. & Schwalbe, H. NMR spectroscopy of RNA. Chembiochem 4, 936–962 (2003).

Article  Google Scholar 

Leontis, N. B. & Zirbel, C. L. in RNA 3D Structure Analysis and Prediction (eds Leontis, N. & Westhof, E.) 281–298 (Springer Berlin Heidelberg, 2012).

Holley, R. W. et al. Structure of a ribonucleic acid. Science 147, 1462–1465 (1965).

Article  CAS  Google Scholar 

Peattie, D. A. & Gilbert, W. Chemical probes for higher-order structure in RNA. Proc. Natl Acad. Sci. USA 77, 4679–4682 (1980).

Article  CAS  Google Scholar 

Wang, X. D. & Padgett, R. A. Hydroxyl radical ‘footprinting’ of RNA: application to pre-mRNA splicing complexes. Proc. Natl Acad. Sci. USA 86, 7795–7799 (1989).

Article  CAS  Google Scholar 

Latham, J. A. & Cech, T. R. Defining the inside and outside of a catalytic RNA molecule. Science 245, 276–282 (1989).

Article  CAS  Google Scholar 

Rouskin, S., Zubradt, M., Washietl, S., Kellis, M. & Weissman, J. S. Genome-wide probing of RNA structure reveals active unfolding of mRNA structures in vivo. Nature 505, 701–705 (2014).

Article  CAS  Google Scholar 

Zubradt, M. et al. DMS-MaPseq for genome-wide or targeted RNA structure probing in vivo. Nat. Methods 14, 75–82 (2017).

Article  CAS  Google Scholar 

Smola, M. J., Rice, G. M., Busan, S., Siegfried, N. A. & Weeks, K. M. Selective 2′-hydroxyl acylation analyzed by primer extension and mutational profiling (SHAPE-MaP) for direct, versatile and accurate RNA structure analysis. Nat. Protoc. 10, 1643–1669 (2015).

Article  CAS  Google Scholar 

Van Damme, R. et al. Chemical reversible crosslinking enables measurement of RNA 3D distances and alternative conformations in cells. Nat. Commun. 13, 911 (2022).

Article  Google Scholar 

Hafner, M. et al. CLIP and complementary methods. Nat. Rev. Methods Prim. 1, 1–23 (2021).

Google Scholar 

Weidmann, C. A., Mustoe, A. M., Jariwala, P. B., Calabrese, J. M. & Weeks, K. M. Analysis of RNA–protein networks with RNP-MaP defines functional hubs on RNA. Nat. Biotechnol. 39, 347–356 (2020).

Article  Google Scholar 

Hafner, M. et al. Transcriptome-wide identification of RNA-binding protein and microRNA target sites by PAR-CLIP. Cell 141, 129–141 (2010).

Article  CAS  Google Scholar 

Spitale, R. C. & Incarnato, D. Probing the dynamic RNA structurome and its functions. Nat. Rev. Genet. https://doi.org/10.1038/s41576-022-00546-w (2022).

Article  Google Scholar 

Nutiu, R. et al. Direct measurement of DNA affinity landscapes on a high-throughput sequencing instrument. Nat. Biotechnol. 29, 659–664 (2011). This paper reports the first implementation of a high-throughput biophysical measurement on a sequencing chip, involving binding of the yeast transcription factor GCn4 to a library of DNA sites.

Article  CAS  Google Scholar 

Tome, J. M. et al. Comprehensive analysis of RNA-protein interactions by high-throughput sequencing-RNA affinity profiling. Nat. Methods 11, 683–688 (2014). This paper reports one of the first implementations of high-throughput biophysical measurements on sequencing chips for RNA, involving the binding of GFP and NELF-E to RNA aptamers.

Article  CAS  Google Scholar 

Buenrostro, J. D. et al. Quantitative analysis of RNA-protein interactions on a massively parallel array reveals biophysical and evolutionary landscapes. Nat. Biotechnol. 32, 562–568 (2014). This paper reports one of the first implementations of high-throughput biophysical measurements on sequencing chips for RNA, involving binding of the coat protein of MS2 bacteriophage to RNA hairpins.

Article  CAS  Google Scholar 

Layton, C. J., McMahon, P. L. & Greenleaf, W. J. Large-scale, quantitative protein assays on a high-throughput DNA sequencing chip. Mol. Cell 73, 1075–1082.e4 (2019).

Article  CAS  Google Scholar 

Yesselman, J. D. et al. Sequence-dependent RNA helix conformational preferences predictably impact tertiary structure formation. Proc. Natl Acad. Sci. USA 116, 16847–16855 (2019). In this paper, the authors study RNA–RNA binding using tectoRNAs on the RNA array and construct a structure-based model that can predict experimental binding energies.

Article  CAS  Google Scholar 

She, R. et al. Comprehensive and quantitative mapping of RNA–protein interactions across a transcribed eukaryotic genome. Proc. Natl Acad. Sci. USA 114, 3619–3624 (2017).

Article  CAS  Google Scholar 

Li, Z. et al. DNB-based on-chip motif finding: a high-throughput method to profile different types of protein-DNA interactions. Sci. Adv. 6, eabb3350 (2020).

Article  CAS  Google Scholar 

Ozer, A. et al. Quantitative assessment of RNA-protein interactions with high-throughput sequencing–RNA affinity profiling. Nat. Protoc. 10, 1212–1233 (2015).

Article  CAS  Google Scholar 

Subtelny, A. O., Eichhorn, S. W., Chen, G. R., Sive, H. & Bartel, D. P. Poly(A)-tail profiling reveals an embryonic switch in translational control. Nature 508, 66–71 (2014).

Article  CAS  Google Scholar 

Denny, S. K. et al. High-throughput investigation of diverse junction elements in RNA tertiary folding. Cell 174, 377–390.e20 (2018).

Article  CAS  Google Scholar 

Jarmoskaite, I. et al. A quantitative and predictive model for RNA binding by human Pumilio proteins. Mol. Cell 74, 966–981.e18 (2019).

Article  CAS  Google Scholar 

Wu, M. J., Andreasson, J. O. L., Kladwang, W., Greenleaf, W. & Das, R. Automated design of diverse stand-alone riboswitches. ACS Synth. Biol. 8, 1838–1846 (2019).

Article  CAS  Google Scholar 

Becker, W. R. et al. High-throughput analysis reveals rules for target RNA binding and cleavage by AGO2. Mol. Cell 75, 741–755.e11 (2019).

Article  CAS  Google Scholar 

Becker, W. R. et al. Quantitative high-throughput tests of ubiquitous RNA secondary structure prediction algorithms via RNA/protein binding. Preprint at bioRxiv https://doi.org/10.1101/571588 (2019).

Andreasson, J. O. L., Savinov, A., Block, S. M. & Greenleaf, W. J. Comprehensive sequence-to-function mapping of cofactor-dependent RNA catalysis in the glmS ribozyme. Nat. Commun. 11, 1663 (2020).

Article  CAS  Google Scholar 

Bonilla, S. L. et al. High-throughput dissection of the thermodynamic and conformational properties of a ubiquitous class of RNA tertiary contact motifs. Proc. Natl Acad. Sci. USA 118, e2109085118 (2021).

Article  CAS  Google Scholar 

Andreasson, J. O. L. et al. Crowdsourced RNA design discovers diverse, reversible, efficient, self-contained molecular switches. Proc. Natl Acad. Sci. USA 119, e2112979119 (2022).

Article  CAS  Google Scholar 

Jung, C. et al. Massively parallel biophysical analysis of CRISPR-Cas complexes on next generation sequencing chips. Cell 170, 35–47.e13 (2017).

Article  CAS  Google Scholar 

Jones, S. K. Jr et al. Massively parallel kinetic profiling of natural and engineered CRISPR nucleases. Nat. Biotechnol. 39, 84–93 (2021).

Article  Google Scholar 

Denny, S. K. & Greenleaf, W. J. Linking RNA sequence, structure, and function on massively parallel high-throughput sequencers. Cold Spring Harb. Perspect. Biol. 11, a032300 (2019).

Article  CAS  Google Scholar 

Bartel, D. P. Metazoan microRNAs. Cell 173, 20–51 (2018).

Article  CAS  Google Scholar 

Lee, R. C., Feinbaum, R. L. & Ambros, V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75, 843–854 (1993).

Article  CAS  Google Scholar 

Cate, J. H. et al. Crystal structure of a group I ribozyme domain: principles of RNA packing. Science 273, 1678–1685 (1996).

留言 (0)

沒有登入
gif