Parvimonas micra activates the Ras/ERK/c-Fos pathway by upregulating miR-218-5p to promote colorectal cancer progression

Oncology TL. Colorectal cancer: a disease of the young? The Lancet Oncology. 2017;18:413.

Article  Google Scholar 

Ohlson EC, Digiovanni RM, Vera E, Nfonsam V. Increasing incidence of early onset colorectal Cancer in Arizona. J Surg Res. 2014;186:505.

Article  Google Scholar 

Thanikachalam K, Khan G. Colorectal Cancer and nutrition. Nutrients. 2019;11:164.

Article  CAS  Google Scholar 

Song M, Emilsson L, Roelstraete B, Ludvigsson JF. 82 RISK OF COLORECTAL CANCER IN FIRST-DEGREE RELATIVES OF PATIENTS WITH COLORECTAL POLYPS: A NATIONWIDE CASE-CONTROL STUDY IN SWEDEN. Gastroenterology. 2021;160:S-20.

Article  Google Scholar 

Chen Y, Chen Y, Zhang J, Cao P, Su W, Deng Y, et al. Fusobacterium nucleatum promotes metastasis in colorectal Cancer by activating autophagy signaling via the upregulation of CARD3 expression. Theranostics. 2020;10:323–39.

Article  CAS  Google Scholar 

Liu QQ, Li CM, Fu LN, Wang HL, Tan J, Wang YQ, et al. Enterotoxigenic Bacteroides fragilis induces the stemness in colorectal cancer via upregulating histone demethylase JMJD2B. Gut Microbes. 2020;12:1788900.

Article  Google Scholar 

Pleguezuelos-Manzano C, Puschhof J, Huber AR, Hoeck Av, Wood HM, Nomburg J, et al. Mutational signature in colorectal cancer caused by genotoxic pks+E. coli. Nature. 2020;580:269–73.

Article  CAS  Google Scholar 

Wang X, Jia Y, Wen L, Mu W, Wu X, Liu T, et al. Porphyromonas gingivalis promotes colorectal carcinoma by activating the hematopoietic NLRP3 Inflammasome. Cancer Res. 2021;81:2745–59.

Article  CAS  Google Scholar 

Long X, Wong CC, Tong L, Chu ESH, Szeto CH, Go MYY, et al. Peptostreptococcus anaerobius promotes colorectal carcinogenesis and modulates tumour immunity, nature. Nat Microbiol. 2019;4:2319–30.

Article  Google Scholar 

Drewes J, Chen J, Markham N, Knippel R, Domingue J, Tam A, et al. Human colon cancer-derived Clostridioides difficile strains drive colonic tumorigenesis in mice. Cancer Discov. 2022;12:1873–85.

Article  CAS  Google Scholar 

Neilands J, Davies J, Bikker F, Svensäter G. Parvimonas micra stimulates expression of gingipains from Porphyromonas gingivalis in multi-species communities. Anaerobe. 2019;55:54–60.

Article  CAS  Google Scholar 

Horiuchi A, Kokubu E, Warita T, Ishihara K. Synergistic biofilm formation by Parvimonas micra and Fusobacterium nucleatum. Anaerobe. 2020;62:102100.

Article  CAS  Google Scholar 

Won SH, Kwong TNY, Chow TC, Luk AKC, Dai RZW, Nakatsu G, et al. Quantitation of faecal Fusobacterium improves faecal immunochemical test in detecting advanced colorectal neoplasia. Gut. 2016;66:1441–8.

Google Scholar 

Yu J, Feng Q, Wong SH, Zhang D, Liang Q, Qin Y, et al. Metagenomic analysis of faecal microbiome as a tool towards targeted non-invasive biomarkers for colorectal cancer. Gut. 2017;66:70–8.

Article  CAS  Google Scholar 

Dai Z, Coker OO, Nakatsu G, Wu WKK, Zhao L, Chen Z, et al. Multi-cohort analysis of colorectal cancer metagenome identified altered bacteria across populations and universal bacterial markers. Microbiome. 2018;6:70.

Article  Google Scholar 

Lwenmark T, Lfgren-Burstrm A, Zingmark C, Eklf V, Palmqvist R. Parvimonas micra as a putative non-invasive faecal biomarker for colorectal cancer. Sci Rep. 2020;10:15250.

Article  Google Scholar 

Shen X, Li J, Li J, Zhang Y, Fang J. Fecal Enterotoxigenic Bacteroides fragilis-Peptostreptococcus stomatis-Parvimonas micra biomarker for noninvasive diagnosis and prognosis of colorectal laterally spreading tumor. Front Oncol. 2020;11:661048.

Article  Google Scholar 

Yang Y, Weng W, Peng J, Hong L, Yang L, Toiyama Y, et al. Fusobacterium nucleatum increases proliferation of colorectal Cancer cells and tumor development in mice by activating toll-like receptor 4 signaling to nuclear factor−κB, and up-regulating expression of MicroRNA-21. Gastroenterology. 2017;152:851–866.e824.

Article  CAS  Google Scholar 

Cao Y, Wang Z, Yan Y, Ji L, He J, Xuan B, et al. Enterotoxigenic Bacteroides fragilis promotes intestinal inflammation and malignancy by inhibiting exosomes-packaged miR-149-3p. Gastroenterology. 2021;161:1552–66.

Article  CAS  Google Scholar 

Zhang Y, Guo L, Li Y, Feng G, Teng F, Li W, et al. MicroRNA-494 promotes cancer progression and targets adenomatous polyposis coli in colorectal cancer. Mol Cancer. 2018;17:1.

Article  Google Scholar 

Ning ZB, Xh B, Yd B, Jda B. The role of miRNAs in colorectal cancer progression and chemoradiotherapy. Biomed Pharmacother. 2021;134:111099.

Article  Google Scholar 

Yuxiao C, Fengyi H, Zhiyuan P, Zongyu H, Ni H, Lei B, et al. Optimization of Culturomics strategy in human fecal samples. Front Microbiol. 2019;10:2891.

Article  Google Scholar 

Chen S, Su T, Zhang Y, Lee A, He J, Ge Q, et al. Fusobacterium nucleatum promotes colorectal cancer metastasis by modulating /KRT7. Gut Microbes. 2020;11:511–25.

Article  Google Scholar 

Zhang X, Li C, Cao W, Zhang Z. Alterations of gastric microbiota in gastric Cancer and precancerous stages. Front Cell Infect Microbiol. 2021;11:559148.

Article  Google Scholar 

Kwong T, Wang X, Nakatsu G, Chow TC, Tipoe T, Dai R, et al. Association between bacteremia from specific microbes and subsequent diagnosis of colorectal Cancer. Gastroenterology. 2018;155:383–390.e388.

Article  Google Scholar 

Chiang M-K, Hsiao P-Y, Liu Y-Y, Tang H-L, Chiou C-S, Lu M-C, et al. Two ST11 Klebsiella pneumoniae strains exacerbate colorectal tumorigenesis in a colitis-associated mouse model. Gut Microbes. 2021;13:e1980348.

Article  Google Scholar 

Wang Y, Zhang C, Hou S, Wu X, Liu J, Wan X. Analyses of potential driver and passenger Bacteria in human colorectal Cancer. Cancer Manag Res. 2020;2020:11553–61.

Article  Google Scholar 

Li X, Liu Z, Li W, Sun N, Xu Y, Xie Z, et al. PTPRR regulates ERK dephosphorylation in depression mice model. J Affect Disord. 2016;193:233–41.

Article  CAS  Google Scholar 

Wong S, Zhao L, Zhang X, Nakatsu G, Han J, Xu W, et al. Gavage of fecal samples from patients with colorectal Cancer promotes intestinal carcinogenesis in germ-free and conventional mice. Gastroenterology. 2017;153:1621–1633.e1626.

Article  Google Scholar 

Yu Q, Sun L, Xu Z, Fan L, Du Y. Severe pneumonia caused by Parvimonas micra: a case report. BMC Infect Dis. 2021;21:364.

Article  Google Scholar 

Xi Zhen L, Algazwi D, Makmur A, Salada B, Hallinan J. Symphysis pubis diastasis due to Parvimonas micra infection: an unusual suspect. J Clin Rheumatol. 2021;27:e98–9.

Article  Google Scholar 

Shah M, DeSantis T, Weinmaier T, McMurdie P, Cope J, Altrichter A, et al. Leveraging sequence-based faecal microbial community survey data to identify a composite biomarker for colorectal cancer. Gut. 2018;67:882–91.

Article  CAS  Google Scholar 

Liu N, Jiao N, Tan J, Wang Z, Wu D, Wang A, et al. Multi-kingdom microbiota analyses identify bacterial-fungal interactions and biomarkers of colorectal cancer across cohorts. Nat Microbiol. 2022;7:238–50.

Article  CAS  Google Scholar 

Xu J, Yang M, Wang D, Zhang S, Chen W. Alteration of the abundance of Parvimonas micra in the gut along the adenomacarcinoma sequence. Oncol Lett. 2020;20:106.

Article  Google Scholar 

Tsoi H, Chu E, Zhang X, Sheng J, Nakatsu G, Ng S, et al. Peptostreptococcus anaerobius induces intracellular cholesterol biosynthesis in Colon cells to induce proliferation and causes dysplasia in mice. Gastroenterology. 2017;152:1419–1433.e1415.

Article  Google Scholar 

Xu C, Fan L, Lin Y, Shen W, Qi Y, Zhang Y, et al. Fusobacterium nucleatum promotes colorectal cancer metastasis through miR-1322/CCL20 axis and M2 polarization. Gut Microbes. 2021;13:1980347.

Article  Google Scholar 

Flemer B, Lynch DB, Brown JMR, Jeffery IB, Ryan FJ, Claesson MJ, et al. Tumour-associated and non-tumour-associated microbiota in colorectal cancer. Gut. 2016;66:633–43.

Article  Google Scholar 

Chen W, Liu F, Ling Z, Tong X, Xiang C, Moschetta A. Human Intestinal Lumen and Mucosa-Associated Microbiota in Patients with Colorectal Cancer. PLoS ONE. 2012;7:e39743.

Article  CAS  Google Scholar 

Wulaningsih W, Holmberg L, Garmo H, Malmstrom H, Lambe M, Hammar N, et al. Serum lactate dehydrogenase and survival following cancer diagnosis. Br J Cancer. 2015;113:1389–96.

Article  CAS  Google Scholar 

Chibaudel B, Tournigand C, Artru P, André T, Cervantes A, Figer A, et al. FOLFOX in patients with metastatic colorectal cancer and high alkaline phosphatase level: an exploratory cohort of the GERCOR OPTIMOX1 study, annals of oncology : official journal of the European society for. Med Oncol. 2009;20:1383–6.

CAS  Google Scholar 

Yang M, Zhang Q, Ruan G, Tang M, Zhang X, Song M, et al. Association between serum creatinine concentrations and overall survival in patients with colorectal Cancer: a multi-center cohort study. Front Oncol. 2021;11:710423.

Article  Google Scholar 

Chang P-H, Pan Y-P, Fan C-W, Tseng W-K, Huang J-S, Wu T-H, et al. Pretreatment serum interleukin-1β, interleukin-6, and tumor necrosis factor-αlevels predict the progression of colorectal cancer. Cancer Med. 2016;5:426–33.

Article  CAS  Google Scholar 

Ray AL, Berggren KL, Cruz SR, Gan GN, Beswick EJ. Inhibition of MK2 suppresses IL-1β, IL-6, and TNF-α-dependent colorectal cancer growth. Int J Cancer. 2018;142:1702–11.

Article  CAS  Google Scholar 

Chen L, He M, Zhang M, Sun Q, Zeng S, Zhao H, et al. The role of non-coding RNAs in colorectal cancer, with a focus on its autophagy. Pharmacol Ther. 2021;226:107868.

Article  CAS 

留言 (0)

沒有登入
gif