Distinct Lymphocyte Immunophenotyping and Quantitative Anti-Interferon Gamma Autoantibodies in Taiwanese HIV-Negative Patients with Non-Tuberculous Mycobacterial Infections

Browne SK, Burbelo PD, Chetchotisakd P, et al. Adult-onset immunodeficiency in Thailand and Taiwan. N Engl J Med. 2012;367(8):725–34. https://doi.org/10.1056/NEJMoa1111160.

Article  CAS  Google Scholar 

Browne SK, Holland SM. Anticytokine autoantibodies in infectious diseases: pathogenesis and mechanisms. Lancet Infect Dis. 2010;10(12):875–85. https://doi.org/10.1016/S1473-3099(10)70196-1.

Article  CAS  Google Scholar 

Chi CY, Chu CC, Liu JP, et al. Anti-IFN-γ autoantibodies in adults with disseminated nontuberculous mycobacterial infections are associated with HLA-DRB1*16:02 and HLA-DQB1*05:02 and the reactivation of latent varicella-zoster virus infection. Blood. 2013;121(8):1357–66. https://doi.org/10.1182/blood-2012-08-452482.

Article  CAS  Google Scholar 

Shih HP, Ding JY, Yeh CF, Chi CY, Ku CL. Anti-interferon-γ autoantibody-associated immunodeficiency. Curr Opin Immunol. 2021;72:206–14. https://doi.org/10.1016/j.coi.2021.05.007.

Article  CAS  Google Scholar 

Tseng CW, Lai KL, Chen DY, Lin CH, Chen HH. The Incidence and Prevalence of Common Variable Immunodeficiency Disease in Taiwan, A Population-Based Study. Plos One. 2015;10(10):e0140473. https://doi.org/10.1371/journal.pone.0140473.

Article  CAS  Google Scholar 

Lee WI, Huang JL, Kuo ML, Lin SJ, Chen LC, Chen MT, Jaing TH. Analysis of genetic defects in patients with the common variable immunodeficiency phenotype in a single Taiwanese tertiary care hospital. Ann Allergy Asthma Immunol. 2007;99(5):433–42. https://doi.org/10.1016/S1081-1206(10)60569-8.

Article  CAS  Google Scholar 

Bustamante J, Boisson-Dupuis S, Abel L, Casanova JL. Mendelian susceptibility to mycobacterial disease: genetic, immunological, and clinical features of inborn errors of IFN-γ immunity. Semin Immunol. 2014;26(6):454–70. https://doi.org/10.1016/j.smim.2014.09.008.

Article  CAS  Google Scholar 

Rosain J, Kong XF, Martinez-Barricarte R, et al. Mendelian susceptibility to mycobacterial disease: 2014–2018 update. Immunol Cell Biol. 2019;97(4):360–7. https://doi.org/10.1111/imcb.12210.

Article  Google Scholar 

Filipe-Santos O, Bustamante J, Chapgier A, et al. Inborn errors of IL-12/23- and IFN-gamma-mediated immunity: molecular, cellular, and clinical features. Semin Immunol. 2006;18(6):347–61. https://doi.org/10.1016/j.smim.2006.07.010.

Article  CAS  Google Scholar 

Filipe-Santos O, Bustamante J, Haverkamp MH, et al. X-linked susceptibility to mycobacteria is caused by mutations in NEMO impairing CD40-dependent IL-12 production. J Exp Med. 2006;203(7):1745–59. https://doi.org/10.1084/jem.20060085.

Article  CAS  Google Scholar 

Dupuis S, Dargemont C, Fieschi C, et al. Impairment of mycobacterial but not viral immunity by a germline human STAT1 mutation. Science. 2001;293(5528):300–3. https://doi.org/10.1126/science.1061154.

Article  CAS  Google Scholar 

Dupuis S, Jouanguy E, Al-Hajjar S, et al. Impaired response to interferon-alpha/beta and lethal viral disease in human STAT1 deficiency. Nat Genet. 2003;33(3):388–91. https://doi.org/10.1038/ng1097.

Article  CAS  Google Scholar 

Bustamante J, Arias AA, Vogt G, et al. Germline CYBB mutations that selectively affect macrophages in kindreds with X-linked predisposition to tuberculous mycobacterial disease. Nat Immunol. 2011;12(3):213–21. https://doi.org/10.1038/ni.1992.

Article  CAS  Google Scholar 

Hambleton S, Salem S, Bustamante J, et al. IRF8 mutations and human dendritic-cell immunodeficiency. N Engl J Med. 2011;365(2):127–38. https://doi.org/10.1056/NEJMoa1100066.

Article  CAS  Google Scholar 

Lee WI, Huang JL, Wu TS, et al. Patients with inhibitory and neutralizing auto-antibodies to interferon-γ resemble the sporadic adult-onset phenotype of Mendelian Susceptibility to Mycobacterial Disease (MSMD) lacking Bacille Calmette-Guerin (BCG)-induced diseases. Immunobiology. 2013;218(5):762–71. https://doi.org/10.1016/j.imbio.2012.08.281.

Article  CAS  Google Scholar 

Boisson-Dupuis S, Bustamante J. Mycobacterial diseases in patients with inborn errors of immunity. Curr Opin Immunol. 2021;72:262–71. https://doi.org/10.1016/j.coi.2021.07.001.

Article  CAS  Google Scholar 

Kampitak T, Suwanpimolkul G, Browne S, Suankratay C. Anti-interferon-γ autoantibody and opportunistic infections: case series and review of the literature. Infection. 2011;39(1):65–71. https://doi.org/10.1007/s15010-010-0067-3.

Article  CAS  Google Scholar 

Patel SY, Ding L, Brown MR, et al. Anti-IFN-gamma autoantibodies in disseminated nontuberculous mycobacterial infections. J Immunol. 2005;175(7):4769–76. https://doi.org/10.4049/jimmunol.175.7.4769.

Article  CAS  Google Scholar 

Lee WI, Fan WL, Lu CH, et al. A Novel CD3G Mutation in a Taiwanese Patient With Normal T Regulatory Function Presenting With the CVID Phenotype Free of Autoimmunity-Analysis of all Genotypes and Phenotypes. Front Immunol. 2019;10:2833. https://doi.org/10.3389/fimmu.2019.02833.

Article  CAS  Google Scholar 

Lee WI, Huang JL, Lin TY, et al. Chinese patients with defective IL-12/23-interferon-gamma circuit in Taiwan: partial dominant interferon-gamma receptor 1 mutation presenting as cutaneous granuloma and IL-12 receptor beta1 mutation as pneumatocele. J Clin Immunol. 2009;29(2):238–45. https://doi.org/10.1007/s10875-008-9253-9.

Article  CAS  Google Scholar 

Wu CY, Chen YC, Lee WI, et al. Clinical Features of Female Taiwanese Carriers with X-linked Chronic Granulomatous Disease from 2004 to 2019. J Clin Immunol. 2021;41(6):1303–14. https://doi.org/10.1007/s10875-021-01055-x.

Article  CAS  Google Scholar 

Lange C, Böttger EC, Cambau E, et al. expert panel group for management recommendations in non-tuberculous mycobacterial pulmonary diseases Consensus management recommendations for less common non-tuberculous mycobacterial pulmonary diseases. Lancet Infect Dis. 2022;7(3):e178–90.

Article  Google Scholar 

Zhou Y, Zhang Y, Han J, Yang M, Zhu J, Jin T. Transitional B cells involved in autoimmunity and their impact on neuroimmunological diseases. J Transl Med. 2020;18(1):131. https://doi.org/10.1186/s12967-020-02289-w.

Article  CAS  Google Scholar 

Rakhmanov M, Keller B, Gutenberger S, et al. Circulating CD21low B cells in common variable immunodeficiency resemble tissue homing, innate-like B cells. Proc Natl Acad Sci U S A. 2009;106(32):13451–6. https://doi.org/10.1073/pnas.0901984106.

Article  Google Scholar 

Pioli PD. Plasma Cells, the Next Generation: Beyond Antibody Secretion. Front Immunol. 2019;10:2768. https://doi.org/10.3389/fimmu.2019.02768.

Article  CAS  Google Scholar 

Yan H, Li B, Su R, Gao C, Li X, Wang C. Preliminary Study on the Imbalance Between Th17 and Regulatory T Cells in Antiphospholipid Syndrome. Front Immunol. 2022;13:873644. https://doi.org/10.3389/fimmu.2022.873644.

Article  CAS  Google Scholar 

Xia Y, Fang X, Dai X, et al. Iguratimod ameliorates nephritis by modulating the Th17/Treg paradigm in pristane-induced lupus. Int Immunopharmacol. 2021;96:107563. https://doi.org/10.1016/j.intimp.2021.107563.

Article  CAS  Google Scholar 

Carvajal Alegria G, Gazeau P, Hillion S, Daïen CI, Cornec DYK. Could Lymphocyte Profiling be Useful to Diagnose Systemic Autoimmune Diseases? Clin Rev Allergy Immunol. 2017;53(2):219–36. https://doi.org/10.1007/s12016-017-8608-5.

Article  CAS  Google Scholar 

Thorarinsdottir K, Camponeschi A, Cavallini N, et al. CD21(-/low) B cells in human blood are memory cells. Clin Exp Immunol. 2016;185(2):252–62. https://doi.org/10.1111/cei.12795.

Article  CAS  Google Scholar 

Zhang J, He T, Xue L, Guo H. Senescent T cells: a potential biomarker and target for cancer therapy. EBioMedicine. 2021;68:103409. https://doi.org/10.1016/j.ebiom.2021.103409.

Article  CAS  Google Scholar 

Lucas CL, Kuehn HS, Zhao F, et al. Dominant-activating germline mutations in the gene encoding the PI(3)K catalytic subunit p110δ result in T cell senescence and human immunodeficiency. Nat Immunol. 2014;15(1):88–97. https://doi.org/10.1038/ni.2771.

Article  CAS  Google Scholar 

Lucas CL, Chandra A, Nejentsev S, Condliffe AM, Okkenhaug K. PI3Kδ and primary immunodeficiencies. Nat Rev Immunol. 2016;16(11):702–14. https://doi.org/10.1038/nri.2016.93.

Article  CAS  Google Scholar 

Chen YC, Weng SW, Ding JY, et al. Clinicopathological Manifestations and Immune Phenotypes in Adult-Onset Immunodeficiency with Anti-interferon-γ Autoantibodies. J Clin Immunol. 2022;42(3):672–83. https://doi.org/10.1007/s10875-022-01210-y.

Article  CAS  Google Scholar 

Wu UI, Wang JT, Sheng WH, et al. Incorrect diagnoses in patients with neutralizing anti-interferon-gamma-autoantibodies. Clin Microbiol Infect. 2020;26(12):1684.e1-1684.e6. https://doi.org/10.1016/j.cmi.2020.02.030.

Article  CAS  Google Scholar 

Browne SK, Zaman R, Sampaio EP, et al. Anti-CD20 (rituximab) therapy for anti-IFN-γ autoantibody-associated nontuberculous mycobacterial infection. Blood. 2012;119(17):3933–9. https://doi.org/10.1182/blood-2011-12-395707.

Article  CAS  Google Scholar 

Wu UI, Chuang YC, Sheng WH, et al. Use of QuantiFERON-TB Gold In-tube assay in screening for neutralizing anti-interferon-γ autoantibodies in patients with disseminated nontuberculous mycobacterial infection. Clin Microbiol Infect. 2018;24(2):159–65. https://doi.org/10.1016/j.cmi.2017.06.029.

Article  CAS  Google Scholar 

Hong GH, Ortega-Villa AM, Hunsberger S, et al. Natural History and Evolution of Anti-Interferon-γ Autoantibody-Associated Immunodeficiency Syndrome in Thailand and the United States. Clin Infect Dis. 2020;71(1):53–62. https://doi.org/10.1093/cid/ciz786.

Article  CAS  Google Scholar 

Ochoa S, Ding L, Kreuzburg S, Treat J, Holland SM, Zerbe CS. Daratumumab (Anti-CD38) for Treatment of Disseminated Nontuberculous Mycobacteria in a Patient With Anti-Interferon-γ Autoantibodies. Clin Infect Dis. 2021;72(12):2206–8. https://doi.org/10.1093/cid/ciaa1086.

Article  Google Scholar 

Coulter TI, Chandra A, Bacon CM, et al. Clinical spectrum and features of activated phosphoinositide 3-kinase δ syndrome: A large patient cohort study. J Allergy Clin Immunol. 2017;139(2):597-606.e4. https://doi.org/10.1016/j.jaci.2016.06.021.

Article  CAS  Google Scholar 

Michalovich D, Nejentsev S. Activated PI3 Kinase Delta Syndrome: From Genetics to Therapy. Front Immunol. 2018;9:369. https://doi.org/10.3389/fimmu.2018.00369.

Article  CAS  Google Scholar 

Ku CL, Lin CH, Chang SW, et al. Anti-IFN-γ autoantibodies are strongly associated with HLA-DR*15:02/16:02 and HLA-DQ*05:01/05:02 across Southeast Asia. J Allergy Clin Immunol. 2016;137(3):945-8.e8. https://doi.org/10.1016/j.jaci.2015.09.018.

留言 (0)

沒有登入
gif