Hippocampal neurochemicals are associated with exercise group and intensity, psychological health, and general cognition in older adults

Barnes DE, Yaffe K. The projected effect of risk factor reduction on Alzheimer’s disease prevalence. Lancet Neurol. 2011;10(9):819–28. https://doi.org/10.1016/S1474-4422(11)70072-2.

Article  Google Scholar 

Laurin D, Verreault R, Lindsay J, et al. Physical activity and risk of cognitive impairment and dementia in elderly persons. Arch Neurol. 2001;58(3):498–504. https://doi.org/10.1001/archneur.58.3.498.

Article  Google Scholar 

Livingston G, Huntley J, Sommerlad A, et al. Dementia prevention, intervention, and care: 2020 report of the Lancet Commission. Lancet. 2020;396(10248):413–46. https://doi.org/10.1016/S0140-6736(20)30367-6.

Article  Google Scholar 

Norton S, Matthews FE, Barnes DE, et al. Potential for primary prevention of Alzheimer’s disease: an analysis of population-based data. Lancet Neurol. 2014;13(8):788–94. https://doi.org/10.1016/S1474-4422(14)70136-X.

Article  Google Scholar 

Arba F, Quinn T, Hankey G, et al. Cerebral small vessel disease, medial temporal lobe atrophy and cognitive status in patients with ischaemic stroke and transient ischaemic attack. Eur J Neurol. 2017;24(2):276–82. https://doi.org/10.1111/ene.13191.

Article  Google Scholar 

Domingos C, Pêgo J, Santos N. Effects of physical activity on brain function and structure in older adults: a systematic review. Behav Brain Res. 2021;402:113061. https://doi.org/10.1016/j.bbr.2020.113061.

Article  Google Scholar 

Niemann C, Godde B, Voelcker-Rehage C. Not only cardiovascular, but also coordinative exercise increases hippocampal volume in older adults. Front Aging Neurosci. 2014;6:170. https://doi.org/10.3389/fnagi.2014.00170.

Article  Google Scholar 

Wu A, Sharrett AR, Gottesman RF, et al. Association of brain magnetic resonance imaging signs with cognitive outcomes in persons with nonimpaired cognition and mild cognitive impairment. JAMA Netw Open. 2019;2(5):e193359–e193359. https://doi.org/10.1001/jamanetworkopen.2019.3359.

Article  Google Scholar 

Bhattacharya TK, Pence BD, Ossyra JM, et al. Exercise but not (–)-epigallocatechin-3-gallate or β-alanine enhances physical fitness, brain plasticity, and behavioral performance in mice. Physiol Behav. 2015;145:29–37. https://doi.org/10.1016/j.physbeh.2015.03.023.

Article  Google Scholar 

Brockett AT, LaMarca EA, Gould E. Physical exercise enhances cognitive flexibility as well as astrocytic and synaptic markers in the medial prefrontal cortex. PLoS ONE. 2015;10(5):e0124859. https://doi.org/10.1371/journal.pone.0124859.

Article  Google Scholar 

Kim T-W, Choi H-H, Chung Y-R. Treadmill exercise alleviates impairment of cognitive function by enhancing hippocampal neuroplasticity in the high-fat diet-induced obese mice. J Exerc Rehabil. 2016;12(3):156. https://doi.org/10.12965/jer.1632644.322.

Article  Google Scholar 

Vilela TC, Muller AP, Damiani AP, et al. Strength and aerobic exercises improve spatial memory in aging rats through stimulating distinct neuroplasticity mechanisms. Mol Neurobiol. 2017;54(10):7928–37. https://doi.org/10.1007/s12035-016-0272-x.

Article  Google Scholar 

Park H-S, Kim C-J, Kwak H-B, et al. Physical exercise prevents cognitive impairment by enhancing hippocampal neuroplasticity and mitochondrial function in doxorubicin-induced chemobrain. Neuropharmacology. 2018;133:451–61. https://doi.org/10.1016/j.neuropharm.2018.02.013.

Article  Google Scholar 

Erickson KI, Voss MW, Prakash RS, et al. Exercise training increases size of hippocampus and improves memory. Proc Natl Acad Sci U S A. 2011;108(7):3017–22. https://doi.org/10.1073/pnas.1015950108.

Article  Google Scholar 

Maass A, Düzel S, Goerke M, et al. Vascular hippocampal plasticity after aerobic exercise in older adults. Mol Psychiatry. 2015;20(5):585–93. https://doi.org/10.1038/mp.2014.114.

Article  Google Scholar 

Rosano C, Guralnik J, Pahor M, et al. Hippocampal response to a 24-month physical activity intervention in sedentary older adults. Am J Geriatr Psychiatry. 2017;25(3):209–17. https://doi.org/10.1016/j.jagp.2016.11.007.

Article  Google Scholar 

Wilckens KA, Stillman CM, Waiwood AM, et al. Exercise interventions preserve hippocampal volume: A meta-analysis. Hippocampus. 2021;31(3):335–47. https://doi.org/10.1002/hipo.23292.

Article  Google Scholar 

Jonasson LS, Nyberg L, Kramer AF, et al. Aerobic exercise intervention, cognitive performance, and brain structure: results from the Physical Influences on Brain in Aging (PHIBRA) study. Front Aging Neurosci. 2016;8:336. https://doi.org/10.3389/fnagi.2016.00336.

Article  Google Scholar 

Matura S, Fleckenstein J, Deichmann R, et al. Effects of aerobic exercise on brain metabolism and grey matter volume in older adults: results of the randomised controlled SMART trial. Transl Psychiatry. 2017;7(7):e1172–e1172. https://doi.org/10.1038/tp.2017.135.

Article  Google Scholar 

Pani J, Reitlo LS, Evensmoen HR, et al. Effect of 5 years of exercise intervention at different intensities on brain structure in older adults from the general population: a generation 100 substudy. Clin Interv Aging. 2021;16:1485. https://doi.org/10.2147/CIA.S318679.

Article  Google Scholar 

Scheewe TW, van Haren NE, Sarkisyan G, et al. Exercise therapy, cardiorespiratory fitness and their effect on brain volumes: a randomised controlled trial in patients with schizophrenia and healthy controls. Eur Neuropsychopharmacol. 2013;23(7):675–85. https://doi.org/10.1016/j.euroneuro.2012.08.008.

Article  Google Scholar 

Stephen R, Liu Y, Ngandu T, et al. Brain volumes and cortical thickness on MRI in the Finnish Geriatric Intervention Study to Prevent Cognitive Impairment and Disability (FINGER). Alzheimers Res Ther. 2019;11(1):1–10. https://doi.org/10.1186/s13195-019-0506-z.

Article  Google Scholar 

Venkatraman VK, Sanderson A, Cox KL, et al. Effect of a 24-month physical activity program on brain changes in older adults at risk of Alzheimer’s disease: the AIBL active trial. Neurobiol Aging. 2020;89:132–41. https://doi.org/10.1016/j.neurobiolaging.2019.02.030.

Article  Google Scholar 

Wagner G, Herbsleb M, Fdl Cruz, et al. Hippocampal structure, metabolism, and inflammatory response after a 6-week intense aerobic exercise in healthy young adults: a controlled trial. J Cereb Blood Flow Metab. 2015;35(10):1570–8. https://doi.org/10.1038/jcbfm.2015.125.

Article  Google Scholar 

Colcombe S, Kramer AF. Fitness effects on the cognitive function of older adults: a meta-analytic study. Psychol Sci. 2003;14(2):125–30. https://doi.org/10.1111/1467-9280.t01-1-01430.

Article  Google Scholar 

Smith PJ, Blumenthal JA, Hoffman BM, et al. Aerobic exercise and neurocognitive performance: a meta-analytic review of randomized controlled trials. Psychosom Med. 2010;72(3):239. https://doi.org/10.1097/PSY.0b013e3181d14633.

Article  Google Scholar 

Young J, Angevaren M, Rusted J, et al. Aerobic exercise to improve cognitive function in older people without known cognitive impairment. Cochrane Database Syst Rev 2015;(4):CD005381. https://doi.org/10.1002/14651858.CD005381.pub4.

Sokołowski DR, Hansen TI, Rise HH, et al. 5 years of exercise intervention did not benefit cognition compared to the physical activity guidelines in older adults, but higher cardiorespiratory fitness did. A generation 100 substudy. Front. Aging Neurosci. 2021;13:742587. https://doi.org/10.3389/fnagi.2021.742587.

Block W, Jessen F, Träber F, et al. Regional N-acetylaspartate reduction in the hippocampus detected with fast proton magnetic resonance spectroscopic imaging in patients with Alzheimer disease. Arch Neurol. 2002;59(5):828–34. https://doi.org/10.1001/archneur.59.5.828.

Article  Google Scholar 

Targosz-Gajniak MG, Siuda JS, Wicher MM, et al. Magnetic resonance spectroscopy as a predictor of conversion of mild cognitive impairment to dementia. J Neurol Sci. 2013;335(1–2):58–63. https://doi.org/10.1016/j.jns.2013.08.023.

Article  Google Scholar 

Schuff N, Amend DL, Knowlton R, et al. Age-related metabolite changes and volume loss in the hippocampus by magnetic resonance spectroscopy and imaging☆. Neurobiol Aging. 1999;20(3):279–85. https://doi.org/10.1016/s0197-4580(99)00022-6.

Article  Google Scholar 

Morrison JH, Hof PR. Life and death of neurons in the aging brain. Science. 1997;278(5337):412–9. https://doi.org/10.1126/science.278.5337.412.

Article  Google Scholar 

Ross AJ, Sachdev PS. Magnetic resonance spectroscopy in cognitive research. Brain Res Rev. 2004;44(2–3):83–102. https://doi.org/10.1016/j.brainresrev.2003.11.001.

Article  Google Scholar 

Gonzales MM, Tarumi T, Kaur S, et al. Aerobic fitness and the brain: increased N-acetyl-aspartate and choline concentrations in endurance-trained middle-aged adults. Brain Topogr. 2013;26(1):126–34. https://doi.org/10.1007/s10548-012-0248-8.

Article  Google Scholar 

Stensvold, Viken H, Rognmo O, et al. A randomised controlled study of the long-term effects of exercise training on mortality in elderly people: study protocol for the Generation 100 study. BMJ Open. 2015;5(2):e007519. https://doi.org/10.1136/bmjopen-2014-007519.

Article  Google Scholar 

Greene SJ, Killiany RJ, Initiative AsDN. Hippocampal subregions are differentially affected in the progression to Alzheimer’s disease. Anat Rec: Adv Integr Anat Evol Biol. 2012;295(1):132–40. https://doi.org/10.1002/ar.21493.

Article  Google Scholar 

Scheenen TW, Klomp DW, Wijnen JP, et al. Short echo time 1H-MRSI of the human brain at 3T with minimal chemical shift displacement errors using adiabatic refocusing pulses. Magn Reson Med. 2008;59(1):1–6. https://doi.org/10.1002/mrm.21302.

Article  Google Scholar 

Voss M. The chronic exercise-cognition interaction: fMRI research. In: T. McMorris. Editor. Exercise-cognition interaction. London: Elsevier Academic Press. 2016;187–209. https://doi.org/10.1016/B978-0-12-800778-5.00009-8.

Borg GA. Psychophysical bases of perceived exertion. Med Sci Sports Exerc. 1982;14(5):377–81.

Article  Google Scholar 

Stensvold, Viken H, Steinshamn SL, et al. Effect of exercise training for five years on all cause mortality in older adults—the Generation 100 study: randomised controlled trial. BMJ. 2020;371:m3485. https://doi.org/10.1136/bmj.m3485.

Zigmond AS, Snaith RP. The hospital anxiety and depression scale. Acta Psychiatr Scand. 1983;67(6):361–70. https://doi.org/10.1111/j.1600-0447.1983.tb09716.x.

Article  Google Scholar 

Mykletun A, Stordal E, Dahl AA. Hospital Anxiety and Depression (HAD) scale: factor structure, item analyses and internal consistency in a large population. Br J Psychiatry. 2001;179(6):540–4. https://doi.org/10.1192/bjp.179.6.540.

Article  Google Scholar 

Haug TT, Mykletun A, Dahl AA. The association between anxiety, depression, and somatic symptoms in a large population: the HUNT-II study. Psychosom Med. 2004;66(6):845–51. https://doi.org/10.1097/01.psy.0000145823.85658.0c.

Article  Google Scholar 

Bjerkeset O, Mykletun A, Dahl AA, et al. Mortality in relation to self-reported mixed anxiety and depression symptoms–The HUNT study. Nord J Psychiatry. 2007;61(1):6–11. https://doi.org/10.1080/08039480601121926.

Article  Google Scholar 

Nasreddine ZS, Phillips NA, Bedirian V, et al. The Montreal cognitive assessment, MoCA: a brief screening tool for mild cognitive impairment. J Am Geriatr Soc. 2005;53(4):695–9. https://doi.org/10.1111/j.1532-5415.2005.53221.x.

Article  Google Scholar 

Stensvold D, Sandbakk SB, Viken H, et al. Cardiorespiratory Reference Data in Older Adults: The Generation 100 Study. Med Sci Sports Exerc. 2017;49(11):2206–15. https://doi.org/10.1249/mss.0000000000001343.

Article  Google Scholar 

Gibbons RJ, Balady GJ, Beasley JW, et al. ACC/AHA guidelines for exercise testing. A report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Committee on Exercise Testing). J Am Coll Cardiol. 1997;30(1):260–311. https://doi.org/10.1016/s0735-1097(97)00150-2.

Article  Google Scholar 

Fischl B. FreeSurfer. Neuroimage. 2012;62(2):774–81.

Article  Google Scholar 

Cabanes E, Confort-Gouny S, Le Fur Y, et al. Optimization of residual water signal removal by HLSVD on simulated short echo time proton MR spectra of the human brain. J Magn Reson. 2001;150(2):116–25. https://doi.org/10.1006/jmre.2001.2318.

Article  Google Scholar 

Provencher SW. Estimation of metabolite concent

留言 (0)

沒有登入
gif