The aging of the immune system and its implications for transplantation

Nikolich-Zugich J. The twilight of immunity: emerging concepts in aging of the immune system. Nat Immunol. 2018;19:10–9. https://doi.org/10.1038/s41590-017-0006-x.

Article  Google Scholar 

Albright JF, Albright JW. Aging, immunity, and infection. Humana Press. 2003, Totowa, NJ, USA.

DeSantis CE, et al. Cancer statistics for adults aged 85 years and older, 2019. CA Cancer J Clin. 2019;69:452–67. https://doi.org/10.3322/caac.21577.

Article  Google Scholar 

Helissey C, Vicier C, Champiat S. The development of immunotherapy in older adults: new treatments, new toxicities? J Geriatr Oncol. 2016;7:325–33. https://doi.org/10.1016/j.jgo.2016.05.007.

Article  Google Scholar 

Nishijima TF, Muss HB, Shachar SS, Moschos SJ. Comparison of efficacy of immune checkpoint inhibitors (ICIs) between younger and older patients: a systematic review and meta-analysis. Cancer Treat Rev. 2016;45:30–7. https://doi.org/10.1016/j.ctrv.2016.02.006.

Article  Google Scholar 

Seluanov A, Gladyshev VN, Vijg J, Gorbunova V. Mechanisms of cancer resistance in long-lived mammals. Nat Rev Cancer. 2018;18:433–41. https://doi.org/10.1038/s41568-018-0004-9.

Article  Google Scholar 

Krenzien F, et al. A rationale for age-adapted immunosuppression in organ transplantation. Transplant. 2015;99:2258–68. https://doi.org/10.1097/TP.0000000000000842.

Article  Google Scholar 

van den Bosch TP, Kannegieter NM, Hesselink DA, Baan CC, Rowshani AT. Targeting the monocyte-macrophage lineage in solid organ transplantation. Front Immunol. 2017;8:153. https://doi.org/10.3389/fimmu.2017.00153.

Article  Google Scholar 

Roh JS, Sohn DH. Damage-associated molecular patterns in inflammatory diseases. Immune Netw. 2018;18:e27. https://doi.org/10.4110/in.2018.18.e27.

Article  Google Scholar 

Boehmer ED, Goral J, Faunce DE, Kovacs EJ. Age-dependent decrease in toll-like receptor 4-mediated proinflammatory cytokine production and mitogen-activated protein kinase expression. J Leukoc Biol. 2004;75:342–9. https://doi.org/10.1189/jlb.0803389.

Article  Google Scholar 

Boehmer ED, Meehan MJ, Cutro BT, Kovacs EJ. Aging negatively skews macrophage TLR2- and TLR4-mediated pro-inflammatory responses without affecting the IL-2-stimulated pathway. Mech Ageing Dev. 2005;126:1305–13. https://doi.org/10.1016/j.mad.2005.07.009.

Article  Google Scholar 

Metcalf TU, et al. Global analyses revealed age-related alterations in innate immune responses after stimulation of pathogen recognition receptors. Aging Cell. 2015;14:421–32. https://doi.org/10.1111/acel.12320.

Article  Google Scholar 

Park SB, Kim JK, Cho KS. Complications of renal transplantation: ultrasonographic evaluation. J Ultrasound Med. 2007;26:615–33. https://doi.org/10.7863/jum.2007.26.5.615.

Article  Google Scholar 

Granata, S. et al. Oxidative stress and ischemia/reperfusion injury in kidney transplantation: focus on ferroptosis, mitophagy and new antioxidants. Antioxidants (Basel) 2022;11. https://doi.org/10.3390/antiox11040769.

Liguori I, et al. Oxidative stress, aging, and diseases. Clin Interv Aging. 2018;13:757–72. https://doi.org/10.2147/CIA.S158513.

Article  Google Scholar 

Zhang Z, et al. A clinically relevant murine model unmasks a “two-hit” mechanism for reactivation and dissemination of cytomegalovirus after kidney transplant. Am J Transplant. 2019;19:2421–33. https://doi.org/10.1111/ajt.15376.

Article  Google Scholar 

Conde P, et al. DC-SIGN(+) Macrophages control the induction of transplantation tolerance. Immunity. 2015;42:1143–58. https://doi.org/10.1016/j.immuni.2015.05.009.

Article  Google Scholar 

Duong L, et al. Macrophage function in the elderly and impact on injury repair and cancer. Immun Ageing. 2021;18:4. https://doi.org/10.1186/s12979-021-00215-2.

Article  Google Scholar 

Agrawal A, Agrawal S, Tay J, Gupta S. Biology of dendritic cells in aging. J Clin Immunol. 2008;28:14–20. https://doi.org/10.1007/s10875-007-9127-6.

Article  Google Scholar 

Agrawal A, Gupta S. Impact of aging on dendritic cell functions in humans. Ageing Res Rev. 2011;10:336–45. https://doi.org/10.1016/j.arr.2010.06.004.

Article  Google Scholar 

Varas A, et al. Age-dependent changes in thymic macrophages and dendritic cells. Microsc Res Tech. 2003;62:501–7. https://doi.org/10.1002/jemt.10411.

Article  Google Scholar 

Steinman RM, Hawiger D, Nussenzweig MC. Tolerogenic dendritic cells. Annu Rev Immunol. 2003;21:685–711. https://doi.org/10.1146/annurev.immunol.21.120601.141040.

Article  Google Scholar 

Ordemann R, et al. Enhanced allostimulatory activity of host antigen-presenting cells in old mice intensifies acute graft-versus-host disease. J Clin Invest. 2002;109:1249–56. https://doi.org/10.1172/JCI14793.

Article  Google Scholar 

Reynoso ED, Lee JW, Turley SJ. Peripheral tolerance induction by lymph node stroma. Adv Exp Med Biol. 2009;633:113–27. https://doi.org/10.1007/978-0-387-79311-5_10.

Article  Google Scholar 

Onder L, Ludewig B. A fresh view on lymph node organogenesis. Trends Immunol. 2018;39:775–87. https://doi.org/10.1016/j.it.2018.08.003.

Article  Google Scholar 

Brown FD, Turley SJ. Fibroblastic reticular cells: organization and regulation of the T lymphocyte life cycle. J Immunol. 2015;194:1389–94. https://doi.org/10.4049/jimmunol.1402520.

Article  Google Scholar 

Link A, et al. Fibroblastic reticular cells in lymph nodes regulate the homeostasis of naive T cells. Nat Immunol. 2007;8:1255–65. https://doi.org/10.1038/ni1513.

Article  Google Scholar 

Alexandre YO, Mueller SN. Stromal cell networks coordinate immune response generation and maintenance. Immunol Rev. 2018;283:77–85. https://doi.org/10.1111/imr.12641.

Article  Google Scholar 

Bromley SK, Thomas SY, Luster AD. Chemokine receptor CCR7 guides T cell exit from peripheral tissues and entry into afferent lymphatics. Nat Immunol. 2005;6:895–901. https://doi.org/10.1038/ni1240.

Article  Google Scholar 

Grasso C, Pierie C, Mebius RE, van Baarsen LGM. Lymph node stromal cells: subsets and functions in health and disease. Trends Immunol. 2021;42:920–36. https://doi.org/10.1016/j.it.2021.08.009.

Article  Google Scholar 

Krishnamurty AT, Turley SJ. Lymph node stromal cells: cartographers of the immune system. Nat Immunol. 2020;21:369–80. https://doi.org/10.1038/s41590-020-0635-3.

Article  Google Scholar 

Thompson HL, et al. Lymph nodes as barriers to T-cell rejuvenation in aging mice and nonhuman primates. Aging Cell. 2019;18:e12865. https://doi.org/10.1111/acel.12865.

Article  Google Scholar 

Becklund BR, et al. The aged lymphoid tissue environment fails to support naive T cell homeostasis. Sci Rep. 2016;6:30842. https://doi.org/10.1038/srep30842.

Article  Google Scholar 

Richner JM, et al. Age-dependent cell trafficking defects in draining lymph nodes impair adaptive immunity and control of West Nile virus infection. PLoS Pathog. 2015;11:e1005027. https://doi.org/10.1371/journal.ppat.1005027.

Article  Google Scholar 

Kwok TMS, Silva-Junior IA, Brown EM, Haug JC, Barrios MR, Morris KA and Lancaster JN. Age-associated changes to lymph node fibroblastic reticular cells. Frontiers in Aging 2022;838943. https://doi.org/10.3389/fragi.2022.838943.

Sonar SA, Uhrlaub JL, Coplen CP, Sempowski GD, Dudakov JA, van den Brink MRM, LaFleur BJ, Jergovic M, Nikolich-Zugich J. Early age-related atrophy of cutaneous lymph nodes precipitates an early functional decline in skin immunity in mice with aging. PNAS USA 2022:119(17);e202108119. https://doi.org/10.1073/pnas.2121028119

Cohen JN, et al. Lymph node-resident lymphatic endothelial cells mediate peripheral tolerance via Aire-independent direct antigen presentation. J Exp Med. 2010;207:681–8. https://doi.org/10.1084/jem.20092465.

Article  Google Scholar 

Fletcher AL, Acton SE, Knoblich K. Lymph node fibroblastic reticular cells in health and disease. Nat Rev Immunol. 2015;15:350–61. https://doi.org/10.1038/nri3846.

Article  Google Scholar 

Yip L, et al. Deaf1 isoforms control the expression of genes encoding peripheral tissue antigens in the pancreatic lymph nodes during type 1 diabetes. Nat Immunol. 2009;10:1026–33. https://doi.org/10.1038/ni.1773.

Article  Google Scholar 

Fletcher AL, et al. Lymph node fibroblastic reticular cells directly present peripheral tissue antigen under steady-state and inflammatory conditions. J Exp Med. 2010;207:689–97. https://doi.org/10.1084/jem.20092642.

Article  Google Scholar 

Lee JW, et al. Peripheral antigen display by lymph node stroma promotes T cell tolerance to intestinal self. Nat Immunol. 2007;8:181–90. https://doi.org/10.1038/ni1427.

Article  Google Scholar 

Dubrot J, et al. Lymph node stromal cells acquire peptide-MHCII complexes from dendritic cells and induce antigen-specific CD4(+) T cell tolerance. J Exp Med. 2014;211:1153–66. https://doi.org/10.1084/jem.20132000.

Article  Google Scholar 

Kedl RM, et al. Migratory dendritic cells acquire and present lymphatic endothelial cell-archived antigens during lymph node contraction. Nat Commun. 2017;8:2034. https://doi.org/10.1038/s41467-017-02247-z.

Article  Google Scholar 

Saxena V, et al. Role of lymph node stroma and microenvironment in T cell tolerance. Immunol Rev. 2019;292:9–23. https://doi.org/10.1111/imr.12799.

Article  Google Scholar 

Li L, Wu J, Abdi R, Jewell CM, Bromberg JS. Lymph node fibroblastic reticular cells steer immune responses. Trends Immunol. 2021;42:723–34. https://doi.org/10.1016/j.it.2021.06.006.

Article  Google Scholar 

Baptista AP et al. Lymph node stromal cells constrain immunity via MHC class II self-antigen presentation. Elife 2014;3. https://doi.org/10.7554/eLife.04433.

Nakayama Y, Bromberg JS. Lymphotoxin-beta receptor blockade induces inflammation and fibrosis in tolerized cardiac allografts. Am J Transplant. 2012;12:2322–34. https://doi.org/10.1111/j.1600-6143.2012.04090.x.

Article  Google Scholar 

Kokkonen TS, Augustin MT, Makinen JM, Kokkonen J, Karttunen TJ. High endothelial venules of the lymph nodes express Fas ligand. J Histochem Cytochem. 2004;52:693–9. https://doi.org/10.1177/002215540405200513.

Article  Google Scholar 

Liu X, et al. Tolerance induction towards cardiac allografts under costimulation blockade is impaired in CCR7-deficient animals but can be restored by adoptive transfer of syngeneic plasmacytoid dendritic cells. Eur J Immunol. 2011;41:611–23. https://doi.org/10.1002/eji.201040877.

Article  Google Scholar 

Simon T, et al. Differential regulation of T-cell immunity and tolerance by stromal laminin expressed in the lymph node. Transplant. 2019;103:2075–89. https://doi.org/10.1097/TP.0000000000002774.

Article  Google Scholar 

Li L, et al. The lymph node stromal laminin alpha5 shapes alloimmunity. J Clin Invest. 2020;130:2602–19. https://doi.org/10.1172/JCI135099.

Article  Google Scholar 

Li, L. et al. Lymph node fibroblastic reticular cells preserve a tolerogenic niche in allograft transplantation through laminin alpha4. J Clin Invest 2022;132. https://doi.org/10.1172/JCI156994

Nakayama Y, Brinkman CC, Bromberg JS. Murine fibroblastic reticular cells from lymph node interact with CD4+ T cells through CD40-CD40L. Transplant. 2015;99:1561–7. https://doi.org/10.1097/TP.0000000000000710.

Article  Google Scholar 

Burrell BE, et al. Lymph node stromal fiber ER-TR7 modulates CD4+ T cell lymph node trafficking and transplant tolerance. Transplant. 2015;99:1119–25. https://doi.org/10.1097/TP.0000000000000664.

Article  Google Scholar 

Masters AR, Jellison ER, Puddington L, Khanna KM, Haynes L. Attrition of T cell zone fibroblastic reticular cell number and function in aged spleens. Immunohorizons. 2018;2:155–63. https://doi.org/10.4049/immunohorizons.1700062.

Article 

留言 (0)

沒有登入
gif